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Analysis of gene expression data remains one of the most promising avenues toward reconstructing
genome-wide gene regulatory networks. However, the large dimensionality of the problem prohibits
the fitting of explicit dynamical models of gene regulatory networks, whereas machine learning methods
for dimensionality reduction such as clustering or principal component analysis typically fail to provide
mechanistic interpretations of the reduced descriptions. To address this, we recently developed a general
methodology called motif activity response analysis (MARA) that, by modeling gene expression patterns
in terms of the activities of concrete regulators, accomplishes dramatic dimensionality reduction while
retaining mechanistic biological interpretations of its predictions (Balwierz, 2014).

Here we extend MARA by presenting ARMADA, which models the activity dynamics of regulators
across a time course, and infers the causal interactions between the regulators that drive the dynamics
of their activities across time. We have implemented ARMADA as part of our ISMARA webserver,
ismara.unibas.ch, allowing any researcher to automatically apply it to any gene expression time course.
To illustrate the method, we apply ARMADA to a time course of human umbilical vein endothelial cells
treated with TNF. Remarkably, ARMADA is able to reproduce the complex observed motif activity dynam-
ics using a relatively small set of interactions between the key regulators in this system. In addition, we
show that ARMADA successfully infers many of the key regulatory interactions known to drive this
inflammatory response and discuss several novel interactions that ARMADA predicts. In combination
with ISMARA, ARMADA provides a powerful approach to generating plausible hypotheses for the key
interactions between regulators that control gene expression in any system for which time course mea-
surements are available.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction eukaryotes there are hundreds of regulatory proteins and RNAs
Understanding the structure, dynamics, and functioning of the
genome-wide regulatory networks that control gene expression
is one of the central challenges in systems biology. Gene regulatory
networks allow individual cells to respond and adapt to changes in
their environments, and allow multi-cellular eukaryotes to express
a single underlying genotype, shared by all their cells, into a large
variety of phenotypically and functionally distinct cell types. More
than half a century has passed since the discovery of the basic bio-
physical mechanism underlying gene regulation [2], and during
this time much has been learned about the molecular players
involved in gene regulation, and the specific mechanisms through
which they act. Very roughly speaking, in the cells of multi-cellular
expressed that bind in a sequence-specific manner to short
sequence motifs within the DNA and RNA. The binding constella-
tions of these regulatory proteins determine the rates at which
genes are being transcribed, the stability of mRNAs, and the rates
at which they are being translated.

We not only understand the basic molecular mechanisms, in
well-studied model organisms most of the molecular players are
known as well, i.e. comprehensive lists of transcription factors
TFs [3] and regulatory RNAs such as miRNAs [4] are available,
and for many of these there is also information about their targets
and their functioning. However, knowing the molecular players
and understanding the molecular mechanisms involved does not
mean that we understand how gene regulatory networks function
as systems. For example, how the actions of regulatory genes are
coordinated to maintain and stabilize cell identity is not under-
stood. Similarly, although it has recently become clear that, given
an appropriate perturbation in the expression of regulatory pro-
teins, cells can be driven from one cell type to another [5], what
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perturbations would be needed to transdifferentiate cells from a
particular cell type to a given desired target type is not understood.
How to recognize the breakdown in control of gene expression,
which may be associated with particular disease states, is another
example of a systems-level question to which we currently have
little insight.

To appreciate the magnitude of the challenge we face in
answering such questions, it helps to recognize just how fragmen-
tary our knowledge of genome-wide gene regulatory interactions
still is in higher eukaryotes. For example, of the roughly 1500 TFs
present in mammalian genomes [6], binding specificities are
known for less than half, e.g. [7]. The ability of TFs to bind to their
cognate sites depends on the local state of the chromatin which
can be modified in a large number of ways, i.e. through chemical
modification of the histone tails within nucleosomes. These epige-
netic marks are both ‘read’ and ‘written’ by chromatin modifying
enzymes which in turn may be recruited to specific loci by TFs
bound to the DNA. This potentially complex feedback between
chromatin state and TF binding is currently poorly understood.
TFs may interact through direct protein–protein contacts with each
other and with a large number of co-factors, and our knowledge of
these interactions is very incomplete. Although regulation of tran-
scription initiation is of crucial importance for the control of gene
expression, expression is also regulated at the level of transcript
processing (splicing, poly-adenylation), mRNA transport, transcript
stability, translation initiation and elongation, and protein degra-
dation. Although some aspects of this post-transcriptional regula-
tion have been investigated in some detail, e.g. the role of
micro-RNAs in regulating transcript stability and translation,
by-and-large our knowledge of this post-transcriptional regulation
is extremely limited. In addition, the ‘activity’ of regulatory factors
is not only determined by their mRNA and protein expression level,
but also by post-translational modification (e.g. phosphorylation at
specific residues), by their localization within the cell, by their
interaction with co-factors, and so on. In other words, although
our knowledge of the individual players and interactions in gene
regulatory networks has been steadily increasing, the things we
do not know still outnumber the things we know by many-fold.
Given this, it is clear that we are still very far removed from being
able to meaningfully simulate detailed models of the functioning of
gene regulatory networks. There is little point in taking all the
information we happen to know, and pouring them into a mathe-
matical model or computational simulation, without realistically
dealing with the fact that there is much more we do not know.

1.1. Using gene expression data to infer regulatory networks

Instead of expecting to establish a detailed model of the func-
tioning of the genome-wide gene regulatory network, much
research focuses on more modest goals, such as identifying the
key regulators operating in a particular model system. Since there
are at least hundreds of potential regulators, it is generally unfea-
sible to experimentally investigate the role of all potential regula-
tors. However, with the advent of high-throughput technologies
such as next-generation sequencing, it has become relatively easy
to measure gene expression and chromatin state genome-wide.
Over the last decade, many researchers have thus turned to such
methodologies with the aim of identifying the key regulatory inter-
actions acting within their specific model systems.

From the point of view of computational methods, the question
has thus become of how we can most efficiently use
high-throughput data, such as genome-wide gene expression data,
to learn about the key regulatory interactions acting in a given sys-
tem. Indeed, a large number of methods for performing inference
of regulatory networks from gene expression data has been pro-
posed over the years, ranging from mostly descriptive methods
that aim to summarize the structure of these high-dimensional
datasets in terms of a relatively small number of statistical fea-
tures, to highly specific methods that fit the data in terms of con-
crete models of the genome-wide gene expression dynamics, e.g.
using coupled differential equations, Gaussian models, or
Bayesian network models, see e.g. [8–10] for reviews.

On one end of this scale, methods that aim to fit the data using
specific models of the underlying gene regulatory network gener-
ally suffer from the ‘curse of dimensionality’. Put simply, because
the number of possible regulatory network architectures is huge,
the amount of data that would be necessary to reliably infer the
regulatory network is many orders of magnitude larger than even
the largest high-throughput datasets can provide. To uniquely pre-
dict a regulatory network from the data, these methods employ
regularization schemes that aim to minimize either the total num-
ber of regulatory interactions, their magnitudes, or a combination
of both. However, it is unclear to what extent we should expect
such ‘minimal’ networks to match the true underlying biological
network. Moreover, in order for the network inference to be com-
putationally feasible, these methods are often forced to treat all
genes as equivalent, thereby ignoring all kinds of relevant prior
biological information. For example, many of such methods simply
investigate the correlation or mutual information between all pairs
of genes, and consider possible regulatory interactions between
any pair of genes, even though prior biological knowledge indicates
that most genes do not act as regulators.

On the other end of the scale, many methods focus simply on
reducing the dimensionality of the data by identifying statistical
descriptors that capture the main features of the data. These
include well-known methods such a principal component analysis
(PCA), which finds linear combinations of the variables (e.g. genes
and conditions) which carry most of the variance in the data, as
well as various clustering methods that divide the genes and or
samples into a relatively small number of subsets that show simi-
lar expression profiles. Although such methods are very valuable in
clarifying the structure of the data, it is generally difficult to relate
the structures that they identify to underlying biological mecha-
nisms. For example, when a particular subset of genes is predicted
to form a ‘co-regulated module’, it is generally unclear what
follow-up experiments could be done to further characterize or
even validate this prediction.

1.2. Motif activity response analysis

In our view, the challenge facing methods for gene regulatory
network reconstruction consist in reducing the dimensionality of
the problem, so that models can be meaningfully fitted to the data,
on the one hand, while at the same time incorporating relevant
prior biological information, and formulating the models in terms
of concrete biological mechanisms that are amenable to direct
experimental follow-up, on the other hand. A few years ago we
proposed an approach to regulatory network inference, called
motif activity response analysis (MARA), which combines these
desirable features [11]. First, recognizing that much of
genome-wide mRNA expression levels are controlled by transcrip-
tional and post-transcriptional regulators, MARA models gene
expression levels explicitly in terms of the activities of TFs and
miRNAs. To do this, MARA makes use of the fact that, both for
miRNAs and for many TFs, targets genes can be computationally
predicted based on DNA and RNA sequence analysis. That is,
MARA first computationally predicts, for each of hundreds of TFs
and miRNAs, which transcripts are regulated by each of these reg-
ulators. MARA then uses a very simple linear model to relate the
observed expression levels of all transcripts in terms of the activi-
ties of the regulators. In this way, the very high-dimensional gene
expression data, i.e. involving expression levels of tens of
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thousands of different transcripts, are reduced to a few hundred
motif activities. Moreover, since MARA also rigorously quantifies
the uncertainty in the inferred motif activities, motifs can be sorted
by how much of the observed expression data they explain.
Dimensionality can then further be reduced by considering only
those motifs that significantly affect gene expression levels, which
is typically on the order of one or two dozen motifs. In this way the
high-dimensional gene expression data is reduced to the activities
of a modest number of key regulators. Importantly, however, since
these motif activities represent the action of specific TFs and
miRNAs, these predictions are directly amenable to experimental
follow-up, e.g. through perturbation of the levels of these regula-
tors, through mapping their genome-wide targets using ChIP-seq,
and so on.

After the initial presentation of MARA and its application to
inferring the core regulatory network of a differentiating human
cell line [11], MARA has since been applied to a large number of
different mammalian systems [12–27] and extended to model
genome-wide chromatin marks in terms of epigenetic motif activ-
ities [28]. Remarkably, in all these systems, MARA’s predictions of
key regulators and their interactions were subsequently confirmed
by experimental validation. It may seem surprising that a simple
linear model, which ignores much of the known biological com-
plexity, so robustly identifies key regulators across a wide variety
of mammalian systems. Indeed, MARA’s linear model generally
performs very poorly at predicting the expression profiles of indi-
vidual genes. However, because typical regulators target hundreds
of genes, the inferred motif activities are statistical averages of the
behaviors of all predicted targets and these averages are highly
robust. That is, motif activities can be accurately estimated because
the complexities of the regulation at each individual target are
effectively averaged out. We recently implemented MARA as a
completely automated tool, called the Integrated System for
Motif Activity Response Analysis (ISMARA) [1], which is available
through a web interface at ismara.unibas.ch. Here users can upload
gene expression data (micro-array or RNA-seq) and have MARA
performed automatically, with the results provided through an
interactive graphical web interface.
1.3. Toward a causal dynamics of motif activities

So far, MARA infers motif activities independently for each
experimental condition in which gene expression was measured.
Here we propose the first steps toward modeling the dynamics of
motif activities across a time course of gene expression measure-
ments. Time-series data provide not only the opportunity to sepa-
rate out events which occur on different timescales and transient
behavior, but also illustrate the sequence of events. This extra
information allows us to begin moving from establishing correla-
tions to establishing causality, an important step in reaching the
goal of a mechanistic understanding of a process.

Here we present ARMADA (Auto Regressive Motif Activity
Dynamics Analysis) which combines MARA with auto-regressive
modeling to infer causal interactions between regulators. In partic-
ular, we first apply MARA to a time course of gene expression mea-
surements to infer a time course of motif activities. We then use an
auto-regressive model that models the motif activities at time t as
a function of the motif activities at time t � 1. To control the com-
plexity of the model we make a number of simplifying assump-
tions. First, we assume that the function relating the motif
activities at time t to those of time t � 1 is time invariant, i.e. the
same at each time point. Second, we assume that the change in
motif activities from time t � 1 to t is a simple linear function of
the current motif activities. Note, however, that even if we only
consider the dynamics of the top M most significant motifs, there
are still M2 possible motif–motif interaction parameters in our
model, and typical gene expression time courses still do not con-
tain enough data to unambiguously determine all parameters.
We will thus additionally assume that motif–motif interactions
are sparse, favoring models with few connections.

The organization of the paper is as follows. We will first review
the methods employed in motif activity response analysis, includ-
ing the predictions of binding sites for TFs and miRNAs, the
assumptions underlying our linear model, and the target predic-
tions. After this we will introduce our ARMADA method, explain
how we optimally fit its parameters to the motif activity dynamics,
and describe the results its outputs. To illustrate the method we
apply it to a time course of gene expression data of human umbil-
ical vein endothelial cells (HUVECs) that are treated with TNFa. As
is well-known, such treatment will trigger an inflammatory
response in HUVECs and we show how ARMADA infers interac-
tions between key regulators of this response, including several
direct interactions that are known in the literature, and several
novel predictions. We have implemented ARMADA as part of our
ISMARA web server, allowing any user to automatically perform
ARMADA on any dataset that was analyzed by ISMARA.
2. Methods

2.1. Motif activity response analysis

MARA first quantifies genome-wide gene expression patterns in
terms of the expression levels of promoters. In particular, for a
given model organism MARA starts from a curated promoterome,
i.e. a genome-wide collection of promoters. For human and mouse
these promoteromes where constructed primarily from
deep-sequencing data of transcription start sites (deepCAGE data
[29]). As described previously, promoters were defined as sets of
neighboring transcription start sites (TSSs) on the genome that,
within measurement noise, are co-regulated across a large panel
of conditions, and were identified from deepCAGE data using a
Bayesian method described previously [30].

2.1.1. Expression data processing
Most algorithms for network inference do not consider the

pre-processing of raw input data to be part of the inference prob-
lem, and assume processed data to be provided. This can some-
times lead to a somewhat careless attitude toward the details of
raw data-processing, e.g. not carefully distinguishing between
transcript-level and gene-level expression values, between relative
and absolute expression levels, between log-transformed and non
log-transformed expression levels, etcetera. However, in our expe-
rience the quality of the network inference crucially depends on
the care given to the pre-processing of raw data and in ISMARA
all pre-processing steps are an integral part of the method. We here
briefly summarize ISMARA’s pre-processing of gene expression
data and refer the reader to [30] for details. ISMARA uses compre-
hensive transcript collections, such as the Gencode transcript col-
lection [31], to associate a set of transcript isoforms to each
promoter. The micro-array or RNA-seq input data is then used to
estimate, for each promoter p and each sample s, the relative
log-expression level Eps, which is defined as the logarithm of the
number of mRNAs in sample s deriving from promoter p per mil-
lion mRNAs.

To calculate Eps for micro-array data, the data are first corrected
for background and non-specific binding and probes that show no
statistical evidence of specific expression in all input samples are
removed. Instead of relying on annotation from the array manufac-
turer, ISMARA maps all probe sequences to the transcript set, tak-
ing into account that a given probe may map to multiple transcript

http://ismara.unibas.ch


P.J. Pemberton-Ross et al. / Methods 85 (2015) 62–74 65
isoforms, which may or may not all be associated with the same
promoter. The log-expression Eps of a promoter is a weighted aver-
age of the log-intensities all probes that map to transcripts that are
associated with the promoter.

Similarly, for RNA-seq data all reads are mapped to the tran-
scripts of the transcript set. When a read maps to n different
transcripts, each transcript is assigned a weight 1=n. A tran-
script’s expression level is estimated as the total weight of reads
mapped to it divided by the transcript length. The expression
level of the promoter is the sum of the expression levels of the
transcripts associated to it. To reduce artefactual fluctuations in
the estimated expression of low expressed promoters due to
the Poisson noise in read counts, a pseudo-count is added to each
promoter which correspond to the fifth-percentile of all promot-
ers’ expression levels in the sample. Finally, the expression values
Eps are obtained by normalizing all expression levels to the sum
of expression levels in the sample, multiplying by one million,
and log-transforming.

2.1.2. Regulatory site prediction
The second key ingredient of ISMARA consists of computation-

ally predicted regulatory sites for a large collection of mam-
malian TFs and miRNAs. We first curated a set of 190
regulatory motifs, i.e. position specific weight matrices, that rep-
resent the binding specificities of � 350 mammalian TFs using
data from motif databases [32,33] together with data from the
literature and our own analysis of ChIP-chip and ChIP-seq data.
For each promoter we obtained a multiple alignment of a 1 kilo-
base region centered on its TSS together with orthologous seg-
ments from 6 other mammals (the 7 species being human,
mouse, rhesus macaque, dog, cow, horse, and opossum). We then
used the MotEvo algorithm [34] to predict functional transcrip-
tion factor binding sites (TFBSs) for all motifs in each alignment.
MotEvo is a Bayesian algorithm that predicts TFBSs by combining
a physical binding model with phylogenetic information from the
multiple alignment to give a higher posterior probability to bind-
ing sites which show evidence of having being conserved. The
TFBS predictions are finally summarized in a matrix N, where
Npm is the sum of the posterior probabilities of all predicted
TFBSs for motif m in promoter p. Similarly, to incorporate
post-transcriptional regulation by miRNAs we use target site pre-
dictions from TargetScan using preferential conservation scoring
(PCT ) [35]. The target ‘site count’ Npm for a miRNA seed family
m targeting promoter p is calculated as the average of the
TargetScan scores across all transcripts associated with promoter
p. Our collections of regulatory motifs and target site predictions
can all be obtained from our SwissRegulon database [36].
2.1.3. Bayesian inference using a linear model
MARA then fits the observed expression data Eps in terms of the

computationally predicted site-counts Npm and (unknown) motif
activities Ams using a simple linear model

Eps ¼ ~cs þ cp þ
X

m

NpmAms þ noise; ð1Þ

where ~cs is a sample-dependent normalization constant which
reflects the total expression in the sample, and cp is the ‘basal’ or
average expression of promoter p.

MARA uses a Bayesian procedure in which a Gaussian prior is

assigned to each motif activity PðAmsÞ / exp �kA2
ms

h i
and the likeli-

hood model PðEjAÞ assumes that the noise term, the difference
between the predicted and observed expression levels resulting
from measurement error, biological fluctuation and model error,
are Gaussian distributed with unknown variance r2, i.e.
PðEjAÞ / exp �
X
p;s

Eps � cp � ~cs �
P

mNpmAms
� �2

2r2

" #
: ð2Þ

The parameter k of the Gaussian prior is fitted through a
cross-validation procedure, whereby k is first fit on a
randomly-selected set comprising 80% of promoters and then used
to predict expression values for all promoters. The average
squared-deviation of these predicted values from the observed
expression levels is then minimized, using the remaining 20% of
all promoters as a test set.

The model (2) can be easily solved and the posterior distribu-
tion PðAjEÞ is given by a multi-variate Gaussian whose maximum
and covariance matrix can be expressed in terms of the singular
value decomposition of the site-count matrix N. Since the entire
posterior distribution PðAjEÞ can thus be explicitly calculated, we
can calculate any particular statistics of interest. Full details of
the form and calculation of the solution can be found in Eqs. (4)–
(10) of the supplementary material of [30].

2.1.4. Interpretation of the linear model
Whereas in many network inference algorithms the expression

levels of regulators are used to directly estimate their ‘activity’ in
each of the samples, MARA does not use the observed mRNA levels
of the regulators. Instead, the motif activities Ams are inferred from
the observed expression of the predicted targets of the motif m and
since the precise biological interpretation of these motif activities
may be unclear, we here provide a more detailed interpretation
of the linear model (2) and its associated motif activities.

Since the Eps correspond to log expression values, the linear
model calculate the absolute expression Xps ¼ eEps as

Xps ¼ asbp

Y
m

eNpmAms ; ð3Þ

with the constants as ¼ e~cs and bs ¼ ecp . If we furthermore define
kms ¼ eAms we have

Xps ¼ asbp

Y
m

ðkmsÞNpm : ð4Þ

Thus, the model effectively assumes that, in sample s, each occur-
rence of a binding site for motif m multiplies the transcript level
of promoter p by a factor kms. Whenever Ams > 0 the multiplicative
factor kms > 1, leading to an increased expression, whereas when
Ams < 0 the occurrence of a binding site for motif m leads to a
repression of promoter p’s transcript level. These multiplicative fac-
tors can be interpreted as follows. Imagine that the TFs binding to
motifs m function as activators. Whenever a site for motif m is
added to promoter p, this site will be bound a certain fraction of
the time f ms which will generally be a function of the nuclear con-
centration of TFs that can bind to sites of motif m in sample s. The
model now assumes that, whenever this site is bound, this increases
the general affinity or binding energy of the RNA polymerase to the
promoter, leading to an increase in the transcription rate by a factor
cms compared to the situation when the promoter is not bound. This
factor may depend on the condition s because it may depend on
other variables, such as the presence of co-factors, which may vary
across conditions. Thus, adding the binding site for motif m to pro-
moter p increases the transcription rate of promoter p by a factor
ð1þ cmsf msÞ ¼ kms. Note that for TFs acting as repressors we would
have cms < 1, i.e. the binding of the site would lower the transcrip-
tion rate. In summary, the model assumes that each binding site in
promoter m will be bound some condition-dependent fraction f ms of
the time, and that whenever a site is bound, this leads the transcrip-
tion rate to be altered by a factor cms. The main simplifying assump-
tion that the model makes is that the factor kms ¼ ð1þ cmsf msÞ is the
same at each promoter, and independent of the other sites occurring
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at the promoter. Although we do not expect this assumption to hold
in general, it does not seem unreasonable to expect that it may hold
approximately for a substantial fraction of promoters that are tar-
geted by a given motif.

In conclusion, the exponent of the motif activity eAms can be
interpreted as the fold-change in the expression level of a pro-
moter that is predicted to be observed in sample s if a binding site
for motif m were to be added to the promoter. Since MARA also
predicts the locations of the binding sites determining the
site-count Npm for each motif and promoter, these predictions are
also directly amenable to experimental verification, i.e. using
experiments in which promoter sites are mutated.

2.2. ARMADA: an autoregressive model of motif activity dynamics

Here we propose to go beyond the inference of independent
motif activities Ams for each sample s, and present a model for
inferring causal interactions between motif activities from time
course gene expression measurements. We assume that, at least

formally, the motif activity profile ~AðtÞ across the time course
obeys a differential equation of the form

d~AðtÞ
dt
¼ Fð~A; tÞ; ð5Þ

where the function F is a function of all current motif activities and
possible other ‘outside’ influences, and which may also be
time-dependent. In this general form the problem is hugely
underdetermined and to make progress we make a number of
assumptions. First of all, we will assume that the function F does

not explicitly depend on time, i.e. Fð~A; tÞ ¼ Fð~AÞ. This means, in par-
ticular, that any outside influences are assumed approximately con-
stant over the length of the time course.

Second, since ISMARA infers motif activity changes, the average
activity of each motif across the time course is zero, i.e.

P
tAmt ¼ 0,

for all m. In other words, the activity Amt at time point t denotes the
deviation at time point t of motif m from its average activity over
the time course. We will make the assumption that these devia-

tions are small enough such that the function Fð~AÞ can be approx-
imated to first order in these ‘deviations’, i.e. we write

d~AðtÞ
dt
¼~Fð0Þ þ~AðtÞ �W: ð6Þ

In this equation, the components Wmn of matrix W, denote the
strength of the ‘causal’ regulatory interaction from motif m to motif

n. The vector ~Fð0Þ can be thought of as a constant vector of outside
influence that consistently drives motif activities (either upward or
downward). For notational simplicity, we will write

Fmð0Þ ¼ A0W0m; ð7Þ

where A0 is the (constant) activity of an outside influence and W0m

is the interaction of the outside influence with motif m, which may
be positive or negative.

The final assumption that we will make is that the time points
are spaced densely enough such that, over each time interval, the
solution of the differential equation can be approximated assuming
the right-hand side constant. We then have, for each time point t
and motif m:

At;m ¼ At�1;m þ dt�1

X
n

At�1;nWnm; ð8Þ

where dt�1 is the time interval from time point t � 1 to time point t.
The form of the model (8) is known in the literature as an
auto-regressive model of order 1 (AR(1) model). Autoregressive
models have been one of the most important tools for modeling
and forecasting of multidimensional time series data, with
established application in fields ranging from finance to ecology.
There is a large corpus of knowledge regarding various extensions
and postprocessing of the basic autoregressive model which have
been well summarized in [37,38], see also [39,40].

The basic premise of an order-1 autoregressive model (AR(1)
model) is that the state of the system at time t, i.e. in our case an

M-dimensional motif activity vector ~At , with M the number of
motifs, can be modeled as a weighted sum of the system state at
the previous time point, t � 1, up to some additive Gaussian noise:

At;m ¼ At�1;m þ
X

n

At�1;ndt�1Wnm þ et;m 8t 2 1 . . . T ð9Þ

where e is the zero-mean Gaussian noise process with het;mi ¼ 0 and

het;met;ni ¼ K�1
mn is the covariance in the noise. That is, the matrix K is

the inverse of the covariance matrix of the noise.
Expressed in this form, the problem can be thought of as a

simultaneous multiple linear regression: let us construct a matrix
of ‘‘predictors’’, X, by stacking the row vectors of our state vector
from t ¼ 1 . . . T � 1:

X ¼ ½A1;m;A2;m; . . . ;AT�1;m�: ð10Þ

Furthermore, let’s define the discrete motif activity derivatives

at;m ¼
At;m � At�1;m

dt�1
; ð11Þ

and a matrix of ‘‘responses’’, Y, by stacking the row vectors of these
discrete time derivatives from t ¼ 2 . . . T:

Y ¼ ½a2;m; a3;m; . . . ; aT;m� ð12Þ

We can now rewrite our T � 1 simultaneous copies of Eq. (9) in
the simpler form:

Y ¼ X �W þ E ð13Þ

where E ¼ et;m is a ðT � 1Þ �M noise matrix.
Under this Gaussian noise model and the autoregressive model

for time evolution, we find that the probability of obtaining the
time course of activities A given a particular W and K is:

pðAjW;KÞ ¼ ð2pÞ
�MðT�1Þ

2 ðdet KÞðT�1Þ=2

� exp �1
2

Tr K � ðY � X �WÞT � ðY � X �WÞ
h i� �

ð14Þ

Since the log-likelihood (14) is a quadratic function of the com-
ponents Wmn, the maximum likelihood (ML) solutions WML and KML

can be easily obtained and are given by

WML ¼ ðXT � XÞ�1 � XT � Y ð15Þ

and

KML ¼
1

NðN � 1Þ ðY � X �WMLÞT � ðY �WML � XÞ ð16Þ

However, this simple ML solution is unsatisfactory for two rea-
sons. First of all, since there are M2 possible interactions Wmn and
only M � T independent activities At;m, over-fitting is a concern
unless T � M. To control over-fitting, we thus want to introduce
a prior PðWÞ on the interactions and restrict the number of motifs
M that are used in the fitting. Second, in the above equations we
have assumed that the motif activities At;m are known with infinite
precision, whereas in reality the At;m are themselves estimated by
MARA from gene expression measurements.

Instead of inferring the interactions W directly from motif activ-
ities, we ultimately are inferring them from a time course of
expression measurement E and use the motif activities A as an
intermediate in this inference. Thus, formally we want to calculate
the likelihood in terms of the expression data E only, i.e. we want
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to calculate PðEjW;KÞ. This likelihood can obtained by marginaliz-
ing over the motif activities

PðEjW;KÞ ¼
Z

PðEjAÞPðAjW;KÞdA; ð17Þ

where the integral is over the activities At;m for all motifs m and
time points t. In the model used by MARA, the likelihood of motif

activity vector ~At at time point t, given a gene expression state Et ,
is given by a multi-variate Gaussian [1]

PðEt j~AtÞ ¼ PðEt j~A�t Þ exp �1
2
ð~At �~A�t Þ � D

�1
t � ð~At �~A�t Þ

� �
; ð18Þ

where ~A�t is the maximum likelihood value of the motif activities,
and Dt is the covariance matrix of motif activities at time t.
Consequently, the probability PðEjAÞ is a multi-variate Gaussian in
terms of all motif activities At;m, so that in principle the integral in
(17) can be performed analytically. Unfortunately, the resulting
expression is a complex function of powers Wt of the interaction
matrix W, which cannot be easily optimized.

Thus, instead of performing the integral (17) analytically, we
approximate this integral by sampling a large number, e.g.

R ¼ 100, of ‘replicate’ motif activity time courses~At from the distri-
bution (18), and let ARMADA infer the interactions W from the
entire set of R replicate time courses. That is, we write

PðEjW;KÞ ¼
Z

dAPðEjAÞPðAjW;KÞ � 1
R

XR

r¼1

PðAr jW;KÞ

� exp
1
R

X
r

logðPðArjW;KÞÞ
" #

; ð19Þ

where the replicate motif activity time courses Ar are sampled from
the distribution (18) and in the last approximation we have
replaced the mean with the geometric mean. It can be shown that,
as long as all replicates have similar likelihood near the global max-
imum likelihood value of W, this leads to the same maximal likeli-
hood value of W and also to a similar curvature of the likelihood
function near its maximum. This approximation allows us to simply
pass the R replicate time courses to ARMADA and perform the ML
inference as defined above, taking care to scale all log-likelihoods
by a factor 1=R in the end.

To control over-fitting, we assume that the interaction weights
Wmn are drawn from a Gaussian distribution with zero-mean and
precision a:

pðWjaÞ ¼ affiffiffiffiffiffiffi
2p
p
	 
M2

exp �a
2

X
m;n

W2
mn

( )
; ð20Þ

where the parameter a controls how strongly interactions are
penalized. Our tests on a number of datasets indicate that values
in the range a 2 ½1;5� work well in practice to minimize the devia-
tion between the observed and predicted activities; for the results
reported here we used a ¼ 2. Apart from allowing the user to set
the value of a, we have also implemented a cross-validation scheme
in which one transition t ! t þ 1 is left out, and a is set to maximize
the prediction on this transition. Finally, although not used in the
results presented here, we have also implemented an informative
prior where for each edge ðm;nÞ there is a separate parameter am;n

which can be specified by the user. The values of am;n can, for exam-
ple, be set either depending on the occurrence of predicted TFBSs
for motif m in promoters of TFs associated with motif n, i.e. a high
value of am;n whenever there is no known site for motif m, and a
lower value when there are such predicted TFBSs. Alternatively,
ISMARA predicts regulatory interactions from each motif m to the
promoters of TFs associated with motif n, and the chi-squared
scores of these predicted regulatory interactions can also be used
to set the am;n.

Another parameter controlled by the user is the activity value
A0 of the external source. Since the prior (20) determines the a pri-
ori likely values of W, the size of A0 relative to the typical size At;m

for the motifs in the model, determines how likely it is a priori to
couple to an outside source rather than to another motif. In
ARMADA A0 is set to match the highest activity At;m observed
across all motifs and time points. For the precision matrix we use
a simple uninformative prior

pðKÞ ¼ ðdet KÞ
Mþ1

2 ð21Þ

over a range in which the likelihood is non-zero. In this case, we
find

WML ¼ ðaI þ XT � XÞ�1 � XT � Y ; ð22Þ

and KML is still given by (16).
Finally, as already noted above, as the number of parameters in

the model grows quadratically with the number of motifs M, it
becomes hard to control over-fitting as the number of motifs
becomes large, and we would thus like to restrict ARMADA to
use only those motifs that are likely key regulators in the process
under study. Indeed, MARA calculates for each motif m an overall
significance zm. In particular, for each time point t, the z-statistic
zmt ¼ A�t;m=

ffiffiffiffiffiffiffiffiffi
Dmm
p

calculates how many standard-deviations the
motif is away from zero, i.e. no activity, at time point t, and the
overall z-score zm is defined as

zm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

X
t

z2
mt

s
: ð23Þ

The higher zm, the more important the motif is in explaining the
observed gene expression variation across the time course. To
reduce dimensionality, ARMADA uses only the M motifs that have
a z-score over a cut-off, which can be set by the user but is typically
of order zm P 2:0.

2.3. Algorithm output

2.3.1. Evidence score for interactions between regulators
The primary output from the algorithm is a set of Gaussian pos-

terior distributions for each element Wm;n of the matrix of interac-
tions W. Each of these posterior distributions is characterized by an

estimated interaction term Ŵm;n and its variance Cm;n. To allow a
more simple and concrete interpretation, this distribution is used
to assign a link-confidence z-score to each interaction defined as

Zm;n ¼ Ŵm;n=
ffiffiffiffiffiffiffiffiffi
Cm;n

p
, which quantifies how much evidence exists

that the coupling Wm;n is non-zero, i. e. the evidence that one reg-
ulator (be it a TF or a miRNA) influences another. ARMADA pro-
vides a list of all predicted interaction strengths Wm;n, sorted by
their significance Zm;n.

2.3.2. Graphical representation of the regulatory network
Those significant couplings with a high link-confidence z-score

Zm;n can be represented as a network, i.e. a graph, where nodes rep-
resenting motifs are joined by a directed edge if the absolute value
of the link-confidence z-score is above a certain threshold.
ARMADA automatically generates such graphs for a desired thresh-
old Zc . In addition, the shape of the arrow and the color of the edge
can be used to indicate whether the interaction was activating

Ŵm;n > 0 or repressing Ŵm;n < 0. See Fig. 2 below for an example
of a network inferred by ARMADA.



Fig. 1. Left panel: the top 5 regulatory motifs, as identified by ISMARA, for the time course of HUVEC cells treated with TNF. The table shows, for each motif, the motif name, its
z-score zm , the associated TFs, a thumbnail of its motif activity profile, and its sequence logo. Right panel: reverse cumulative distribution of Z scores Zm;n , as calculated by
ARMADA, of all possible interactions among the 19 regulatory motifs with zm > 2. The vertical axis is shown on a log scale and the red line shows an exponential fit to the
initial part of the distribution.

Fig. 2. The core regulatory network of the gene expression dynamics observed in
HUVEC cells upon treatment with TNFa as predicted by application of ARMADA.
Each node corresponds to a regulatory motif and each edge to a predicted causal
regulatory interaction. The intensity of the node’s color corresponds to the overall
significance zm of the corresponding motif, and the thickness of the edges
corresponds to the significance Zm;n of the regulatory interaction. Activating
interactions are shown in green and repressing interactions are shown in red. The
UFE (unknown functional element) node corresponds to an unknown outside
influence that drives motif activities consistently up or consistently down across
the time course.
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It is important to distinguish the regulatory network predicted
by ARMADA from the regulatory network that ISMARA provides in
its results. In ISMARA, the motif m is predicted to target a gene g
when the promoter of g has one or more binding sites for motif
m, and the motif activity of m contributes significantly to explain-
ing the mRNA expression profile of g. ISMARA then identifies,
among the target genes of each motif m, those genes that are them-
selves encoding TFs corresponding to motifs m0 within ISMARA’s
collection of motifs. In this way ISMARA also provides a regulatory
network with edges from motifs m to m0, where the edge m! m0

indicates that the activity of motif m contributes to explaining
the mRNA level of a TF associated with motif m0. In contrast, in
ARMADA’s network an edge from motif m to m0 indicates that
the motif activity of m at time t, contributes to explaining the motif
activity of m0 at time point t þ 1.
2.3.3. Ability to recapture ISMARA activity dynamics
To further assess the performance of the model, ARMADA first

compares the observed discrete-time derivatives at;m with those
predicted by the model, i.e.

atheo
t;m ¼

X
n

Ŵm;nA�t�1;n: ð24Þ

ARMADA provides, for each motif m, a scatter plot of the observa-
tions ðatheo

t;m ; at;mÞ (examples are shown in left panels of Fig. 3 below)
and calculates its Pearson correlation coefficient. In the results,
ARMADA provides these correlation coefficients and scatter plots
for each motif.

Secondly, using the predicted motif activity changes atheo
t;m ,

ARMADA constructs a ‘one step’ predicted motif activity profile
by estimating

Aos
t;m ¼ atheo

t;m dt�1 þ A�t�1;m: ð25Þ

As explained above, to estimate the interactions W, ARMADA uses R
replicate motif activity time courses At;m and the ARMADA output
reports both the mean and standard-deviation of the
one-step-forward projected time course Aos

t;m. As a heuristic of
ARMADA’s performance, plots are provided that show this pre-
dicted motif activity time course side-by-side with the observed
motif activities (middle panels in Fig. 3 below).

2.3.4. Long-term behavior of the predicted dynamics
ARMADA also calculates a ‘forward projected’ motif activity

time course Afp
t;m by starting from the motif activities at the initial

time point and iterating the matrix Ŵ , i.e.

Afp
t;m ¼ Afp

t�1;m þ dt�1

X
n

Afp
t�1;nŴn;m: ð26Þ

The ARMADA output also reports both the mean and
standard-deviation of this long-term forward-projected time course

Afp
t;m, again side-by-side with the observed motif activity dynamics

A�t;m (right panels of Fig. 3 below). Regarding the long-term
forward-projected time course, it should be noted that a poor corre-
spondence between the predicted and observed motif activities
using this method does not necessarily mean that the predicted
interactions are unreliable. This method of propagating forward in
time from an initial observation is of course very sensitive to the
initial activities A1;m used, and fluctuations in A1;m may be amplified

as t increases, so that Afp
t;m may not be close to A�t;m for large t.



Fig. 3. Motif activities for some of the top regulatory factors, as inferred by ISMARA and modeled by ARMADA. The rows correspond, from top to bottom, to the motifs NFjB,
XBP1, E2F, miR-129, and TBP. The left panels show a scatter plot of the ARMADA predicted motif activity changes at consecutive time points (horizontal axis) against the
observed motif activity changes (vertical axis). The middle panels show the ARMADA one step predicted activity profiles and the right panels the ARMADA forward projected
activity profiles (red curves). The observed motif activity profiles are shown as the blue curves. The error bars correspond to standard deviations across 100 samples of the
posterior probability of motif activities, as inferred by ISMARA.
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However, it may still be that the Wm;n provides a good time-domain
update between most of the at;m for t > 1.
3. Results

To illustrate ARMADA’s performance we applied it to a time ser-
ies of gene expression measurements of human umbilical vein
endothelial cells (HUVECs) that were treated with tumor necrosis
factor (TNF, also known as TNF-alpha). We previously analyzed this
dataset with ISMARA [1]. Messenger RNA expression was mea-
sured every 15 min for the first 4 h after treatment, and every
30 min for the next 4 h after that [41]. As is well-known, TNF treat-
ment causes an inflammatory response in HUVEC cells, and since
innate immunity and inflammation have been the subject of
intense study, much is known about the regulation of this process,
allowing us to compare ARMADA’s predictions with knowledge
from the literature.

As discussed previously [1], ISMARA successfully identified the
known key regulators of this inflammatory response and Fig. 1
shows the top 5 motifs identified by ISMARA, together with their
significance zm, a thumbnail of their motif activity profile across
the time course, and their sequence logo (left panel). The complete
ISMARA results on this dataset are available at ismara.unibas.
ch/supp/dataset3/ismara_report. In total ISMARA identified 19
motifs with zm > 2 and we selected these motifs for further analy-
sis with ARMADA. The full results of the ARMADA analysis on this
dataset are available at ismara.unibas.ch/supp/dataset3/ismara_re-
port/armada. Since ARMADA allows each motif to be regulated by
an unknown functional element (UFE), corresponding to A0 in Eq.
(7), which provides a constant driving force across the time course,
there are 20 � 19 ¼ 380 possible regulatory interactions that
ARMADA considers for this dataset.

The right panel of Fig. 1 shows the reverse cumulative distribu-
tion of interaction z-scores Zm;n that ARMADA calculated for all 380
possible regulatory interactions. As shown by the fitted red line, at
low significances the z-scores are roughly exponentially dis-
tributed, while for z-scores above approximately 3 the curve
breaks away from this exponential and shows an enrichment of
interactions with much higher z-scores. Fig. 2 shows the core reg-
ulatory network for the HUVEC time course, as inferred by
ARMADA, retaining all regulatory links with Zm;n P 3. In Fig. 3
below, the motif activities as inferred by ISMARA, and as modeled
by ARMADA, are shown for some of the most important motifs.

Before discussing the biological significance of the inferred net-
work, we first mention a technical point. We have noticed that
ARMADA consistently infers negative regulatory interactions of
motifs on themselves. This is likely due to the fact that ISMARA’s
motif activities are already normalized to the average activity
across the time course, such that an activity At;m ¼ 0 corresponds
not to zero activity of the motif, but rather an activity equal to
its time average. Positive motif activities are thus upward devia-
tions from this average, and negative motif activities downward
variations. The negative self-interactions likely reflect the fact that,
due to this normalization, deviations generally tend to shrink as
time increases, and they generally ensure that the motif activities
stay bounded with time. For visual clarity we omitted these
self-interactions from the network picture in Fig. 2.

The predicted core network has a hierarchical structure, so the
nodes in Fig. 2 are placed such that the causal flow roughly runs
from top to bottom in the figure. We see that, at the top of the fig-
ure is the UFE, which represents an outside influence that drives
motif activities either consistently upward or downward across
the time course. This UFE likely reflects the direct effects of TNF
and the signaling pathways that it activates. The most significantly
activated regulatory motifs are, in order of significance, NFjB, IRF,
STAT4/6, PRDM1, NR2F2, TBP, and XBP1, whereas miR-19 and E2F
are downregulated by the UFE. We will first discuss the activated
motifs.

By far the most significant and most strongly regulated motifs
are NFjB (bound by the complex NFKB1/REL/RELA) and the IRF
motif which is bound by multiple interferon response regulators.
Indeed it is well-known that these regulators are key drivers of
the inflammatory response [42]. In addition, ARMADA predicts that
NFjB directly activates IRF and this interaction is confirmed by the
literature [43]. Interestingly, ARMADA also predicts that IRF and
NFjB both activate the downstream regulator PRDM1 (also known
as BLIMP-1), which is an important developmental regulator in the
B-cell and T-cell lineages. A literature search reveals that, indeed,
there is evidence from other systems that PRDM1 is targeted by
NFjB as well as several IRF factors [44,45]. That there is a general
cross-talk between IRF and PRDM1 is further supported by the fact
that these TFs can compete for binding to target sites on the DNA at
a subset of their target genes [46].

Another upregulated motif is the motif bound by the STAT2,
STAT4, and STAT6 TFs. From the mRNA expression data it is clear
that, in this system, it is mostly STAT4 and STAT6 that are upregu-
lated and these factors are indeed known to play a crucial role in
the inflammatory response and the associated cytokine signaling
[47].

In contrast to the previous regulators, relatively little is known
about the role of NR2F2 and TATA-binding protein (TBP) in the
inflammatory response. NR2F2 binds to the regulatory motif that
is also bound by NR2F1 and HNF4A, but the mRNA expression in
this system makes clear that NR2F2 is the crucial factor here and
that it likely acts as a repressor (see ismara.unibas.ch/supp/data-
set3/ismara_report/pages/HNF4A_NR2F1,2.p2). NR2F2 (also
known as COUP-TFII) is known to play a crucial role in lymph ves-
sel differentiation [48] and has recently been reported to, in a dif-
ferent context, regulate genes involved in inflammation [49]. These
observations together are consistent with ARMADA’s prediction
that NR2F2 plays an important role in the inflammatory response
in HUVEC cells. ARMADA also predicts that NR2F2 directly regu-
lates KLF12, which is a novel prediction as far as we are aware.

The role of TATA-binding protein in the inflammatory response
in HUVEC cells is currently unclear. Although its activity is quickly
upregulated in the first hour, the mRNA levels of TBP appear to be
decreasing. This would imply TBP acts as a repressor in this system,
which is at odds with current knowledge about the role of TBP. It is
conceivable that, rather than TBP itself, the activity of the TBP reg-
ulatory motif is mediated by cofactors or, more generally, by the
chromatin state of the promoters that contain TATA boxes, which
are known to represent a special class of mammalian promoters.
Indeed, it was recently found that Immediate/Early genes in the
inflammatory response are characterized by having TATA-boxes
[50]. Our literature search suggests that ARMADA’s prediction that
TBP upregulates XBP1 is also novel.

XBP1 is the final motif predicted to be externally upregulated
and it is indeed known to be a key regulator in the inflammatory
response. XBP1 is the main regulator of ER stress and the unfolded
protein response (UPR) [51] and UPR is known to be a general char-
acteristic of the inflammatory response resulting from TNF activa-
tion [52,53]. XBP1 activity thus likely reflects the general activation
of the UPR.

An interesting prediction made by ARMADA is that there is
direct cross-talk between NFjB and XBP1, with the most signifi-
cant prediction being that XBP1 downregulates NFjB. Notably,
XBP1 is upregulated rather late in the time course, and its upregu-
lation coincides with the leveling off of NFjB motif activity (see
Fig. 3). Indeed, there is recent evidence in the literature for direct
cross-talk between NFjB and XBP1 in breast cancer [54].
Moreover, several studies have shown that the UPR can attenuate

http://ismara.unibas.ch/supp/dataset3/ismara_report
http://ismara.unibas.ch/supp/dataset3/ismara_report
http://ismara.unibas.ch/supp/dataset3/ismara_report/armada
http://ismara.unibas.ch/supp/dataset3/ismara_report/armada
http://ismara.unibas.ch/supp/dataset3/ismara_report/pages/HNF4A_NR2F1,2.p2
http://ismara.unibas.ch/supp/dataset3/ismara_report/pages/HNF4A_NR2F1,2.p2
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the inflammatory response mediated by NFjB [55–57], supporting
the feedback of XPB1 on NFjB.

This brings us to the part of the network that is negatively reg-
ulated by external influences, starting from the external negative
regulation of miR-19 and E2F, and including the downstream
effects on miR-129, ELF1, and KLF12. Of these motifs, E2F is pre-
dicted to be by far the most significant. E2F is a complex regulatory
motif that is bound by the family of E2F TFs, which includes both
activators and suppressors that are involved in regulating various
checkpoints in the cell cycle. In previous analysis with ISMARA
we have found that E2F activity tends to reflect the proliferate state
of the cells, with increased E2F activity reflecting increased prolif-
eration [1]. Since E2F is down-regulated across the time course
(Fig. 3), this may thus reflect progressive cell cycle arrest.

However, of all E2F family members, it is the expression of E2F8
that most closely resembles the E2F motif activity, suggesting that
E2F motif activity may reflect the activity of E2F8, which is known
to respond to DNA damage [58]. Moreover, TNF is known to induce
DNA damage during an inflammatory response [59]. Together
these observations suggest that at least part of the E2F motif activ-
ity may reflect a response to DNA damage, and indeed among the
predicted targets of E2F in ISMARA genes involved in DNA repair
are over-represented (ismara.unibas.ch/supp/dataset3/ismara_
report/pages/E2F1..5.p2).

According to ARMADA’s predictions, E2F activity is involved in
cross-talk with XBP1 and two miRNAs in the ‘repressive’ branch
of the regulatory network. The most upstream of these miRNAs
is miR-19 whose activity is down-regulated across the time course
meaning that the targets of miR-19 are progressively
down-regulated (Fig. 3). This implies that miR-19 is itself upregu-
lated over the time course. Indeed, miR-19 is upregulated in
inflammatory response and it has been found that miR-19 expres-
sion enhances the inflammatory response by down-regulating a
number of repressors of NFjB [60]. Although it is not known that
miR-19 directly targets E2F factors, miR-19 is part of the
miR-17-92 cluster which is known to be involved in a regulatory
feedback loop with E2F factors and proliferation [61,62].

The other miRNA predicted to interact with E2F is miR-129.
miR-129’s activity drops quickly in the first 45 min of the time
course, and subsequently slowly recovers. This again implies that
miR-129 is sharply upregulated in the initial phase. Indeed,
miR-129 has been previously reported to be upregulated during
an innate immune response [63]. ARMADA predicts E2F to regulate
miR-129 activity and, at a lower z-score of about 2, ARMADA also
predicts miR-129 to negatively effect E2F activity. That miR-129
negatively affects proliferation and directly target E2F TFs is con-
firmed in the literature [64,65]. ARMADA additionally predicts that
miR-129 targets ELF1,2,4 and KLF12. Indeed, both ELF1 and KLF12
are predicted targets of miR-129 [35]. It may seem
counter-intuitive that miR-129 is predicted to activate KLF12 since
micro-RNAs generally act as repressors. However, the prediction is
that miR-129 positively affects the activity of KLF12. Since KLF12 is
known to be a repressor, this implies that miR-129 activity nega-
tively impacts on the expression of KLF12.

In summary, ARMADA’s core regulatory network recapitulates
much that is known about the inflammatory response in endothe-
lial cells, and a remarkable number of predicted links are sup-
ported by literature evidence. In addition, ARMADA predicts a
substantial number of novel regulatory interactions that would
be of interest for targeted experimental follow-up.

A further heuristic evaluation of ARMADA’s performance can be
obtained by comparing the observed motif activity dynamics, i.e.
the motif activities inferred by ISMARA, to those predicted by
ARMADA’s dynamical model. The left panels of Fig. 3 show scatter
plots of the predicted motif activity changes from one time step to
the next against the observed motif activity changes for a few
selected motifs. We see that the predicted motif activity changes
generally correlate well with the observed changes.
Consequently, the one-step projected motif activity profiles tend
to closely follow the observed motif activity profiles (middle
panels of Fig. 3).

Strikingly, the forward projected motif activity profiles, i.e. the
motif activity dynamics obtained by solving ARMADA’s inferred
model forward in time, using only the initial motif activities at
the first time point as a starting condition, show a remarkable
match to the observed activity profiles. This close match not only
applies to motifs showing a simple up- or down-regulation, but
also to motifs showing more complex time dynamics. The fact that
ARMADA is able to recreate these complex time dynamics using
only a limited number of interactions further suggests the validity
of the inferred interactions. ARMADA’s full predictions, including
networks at different cut-offs on the z-score, as well as all pre-
dicted motif activity profiles for all motifs, can be viewed at
ismara.unibas.ch/supp/dataset3/ismara_report/armada.

Finally, to make ARMADA easily available to any researcher in
possession of time course gene expression data, we have imple-
mented ARMADA as an extension of our ISMARA webserver. As
we have described previously [1], users can perform automated
ISMARA analysis of gene expression data by simply uploading
raw gene expression data to our webserver at ismara.unibas.ch.
Once the ISMARA analysis has been performed, the results page
includes a button for automatically performing ARMADA analysis
on the results. The only thing the user has to specify is the order
of the time points, and the assignment of replicate numbers
when there are replicate time courses. All results are displayed
within our graphical web interface and including networks and
motif activity plots exactly as those presented in the figures in
this paper.
4. Discussion

Analysis of genome-wide gene expression data is one of the
most promising approaches for inferring gene regulatory networks
and we have here discussed how motif activity response analysis
(MARA), by leveraging TF binding site predictions to model gene
expression in terms of regulatory motif activities, can simultane-
ously reduce the dimensionality of the inference problem, while
retaining the ability to give specific mechanistic interpretations
that can be directly experimentally validated. A substantial num-
ber of recent applications of MARA confirm that it successfully
identifies key regulators and their regulatory roles across a wide
range of mammalian systems. In this paper we have further
extended this methodology by introducing ARMADA, which infers
causal regulatory interactions between the regulators from time
course measurements.

Of course, both MARA and ARMADA make a large number of
hugely simplifying assumptions about the genome-wide gene reg-
ulatory networks, and ignore many factors that are known to be
crucial to a full understanding of gene expression regulation, such
as regulation of protein stability, post-translational modifications,
protein localization within the cell, the local chromatin state of
the DNA and DNA accessibility, interaction of regulators with
co-factors, and so on. In fact, it is clear that gene regulatory net-
works are extremely complex and, in all likelihood, we are cur-
rently aware of only a tiny sliver of the genome-wide molecular
interactions that impact on gene regulation. As such, we do not
pretend that either MARA or ARMADA are able to explain even a
moderate fraction of the expression changes which occur, even if
perfectly noiseless data at high sampling rates were available.
The main aims of MARA and ARMADA are to provide experimental
researchers with ways to generate plausible hypotheses that can

http://ismara.unibas.ch/supp/dataset3/ismara_report/pages/E2F1..5.p2
http://ismara.unibas.ch/supp/dataset3/ismara_report/pages/E2F1..5.p2
http://ismara.unibas.ch/supp/dataset3/ismara_report/armada
http://ismara.unibas.ch
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be investigated by targeted experimental work. Recent applica-
tions of MARA strongly suggest that it successfully identifies key
regulators ab initio and the results presented here suggest that
ARMADA is a valuable extension that makes plausible hypotheses
about the ways in which regulators causally affect each other’s
activities.

We note that, as ARMADA provides an explicit formula for pre-
dicting motif activities forward in time, it is straight forward to
make in silico predictions about the effects of perturbing the
expression of a particular regulator. For example, ARMADA could
easily predict the expected effects of the knock-out of a particular
TF or the interruption of one TF–TF interaction. This will be espe-
cially valuable to prioritize which validation experiments are most
likely to be informative about regulatory network structure and
function.

The specific assumptions that ARMADA makes suggest that it
will likely be most effective on data-sets in which the time
points are sampled densely enough such that motif activity
changes are relatively small from one time point to the next.
In addition, the assumption that external influences are approx-
imately constant over the time course is likely most appropriate
for systems in which the external conditions are held relatively
constant.

There are several ways in which ARMADA can be further
extended. Probably the most important of these is the incorpora-
tion of specific prior information regarding regulatory interac-
tions that are more or less plausible and a major advantage of
our Bayesian frame work is that such ‘informative priors’ can
be easily incorporated. For example, instead of a constant preci-
sion a in the prior of each putative interaction Wm;n, we can
easily give independent precisions am;n depending on the prior
information that regulator m may target regulator n, e.g. through
the existence of binding sites for regulator m in the promoter of
the gene of regulator n, or through ISMARA’s prediction that
motif m targets a promoter of a TF associated with motif n.
Indeed, we have already implemented such a scheme in
ARMADA, allowing users to specify a matrix of prior parameters
am;n. However, at the time of completion of this manuscript we
were still experimenting with different ways for setting the am;n

in terms of TFBS and ISMARA target predictions, and we intend
to report on a specific approach to setting informative priors in
a future publication. Further in the future we intend to also pro-
vide meta-analysis of the interactions Wm;n across multiple
data-sets. That is, since the gene regulatory networks are ulti-
mately hard-coded into the genome through the constellations
of regulatory sites, we expect the same interactions Wm;n to reap-
pear across different systems and conditions. Another possible
extension is to relax the assumption that outside influences are
constant in time by, for example, allowing them to fluctuate over
time, or to only exist for a fraction of the time course. In some
situations we may have specific prior information about the time
dependence of the driving forces and these could be directly
incorporated in the model.

One of the ultimate goals of modeling gene regulatory networks
is to understand how the genome-wide regulatory interactions
implement the gene expression ‘attractors’ corresponding to differ-
ent cell types in cellular eukaryotes. That is, we imagine that the
interactions between regulators that shape gene expression
dynamics as cells move from one state to another are ultimately
also responsible for stabilizing the gene expression states of dis-
crete cell types against perturbations. From this point of view it
would be extremely interesting to compare the regulatory interac-
tions that ARMADA infers from time course data, with regulatory
interactions that can be inferred from the fluctuations in gene
expression across single cells of a given cell type.
Author’s contributions

EvN and PPR designed the investigation and the algorithm, MP
and PPR implemented the webserver, PPR and EvN wrote the
paper.

Acknowledgements

The authors express thanks to Piotr Balwierz for help with pro-
cessing the sequencing data and providing access to ISMARA, and
to Florian Geier and Olin Silander for useful suggestions. This work
was supported by the CellPlasticity project grant of SystemsX.ch,
the Swiss Initiative in Systems Biology.

References

[1] P.J. Balwierz, M. Pachkov, P. Arnold, A.J. Gruber, M. Zavolan, E. van Nimwegen,
ISMARA: automated modeling of genomic signals as a democracy of regulatory
motifs, Genome Res. 24 (5) (2014) 869–884.

[2] F. Jacob, J. Monod, Genetic regulatory mechanisms in the synthesis of proteins,
J. Mol. Biol. 4 (1961) 318–356.

[3] S.K. Kummerfeld, S.A. Teichmann, DBD: a transcription factor prediction
database, Nucl. Acids Res. 34 (2006) D74–D81.

[4] A. Kozomara, S. Griffiths-Jones, miRBase: annotating high confidence
microRNAs using deep sequencing data, Nucleic Acids Res. 42 (2014) 68–73.
Database issue.

[5] K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse
embryonic and adult fibroblast cultures by defined factors, Cell 126 (4) (2006)
663–676.

[6] J.M. Vaquerizas, S.K. Kummerfeld, S.A. Teichmann, N.M. Luscombe, A census of
human transcription factors: function, expression and evolution, Nat. Rev.
Genet. 10 (4) (2009) 252–263.

[7] A. Jolma, J. Yan, T. Whitington, J. Toivonen, K.R. Nitta, P. Rastas, E. Morgunova,
M. Enge, M. Taipale, G. Wei, K. Palin, J.M. Vaquerizas, R. Vincentelli, N.M.
Luscombe, T.R. Hughes, P. Lemaire, E. Ukkonen, T. Kivioja, J. Taipale, Dna-
binding specificities of human transcription factors, Cell 152 (1–2) (2013) 327–
339. <http://www.ncbi.nlm.nih.gov/pubmed/23332764>.

[8] H.J. Bussemaker, B.C. Foat, L.D. Ward, Predictive modeling of genome-wide
mRNA expression: from modules to molecules, Annu. Rev. Biophys. Biomol.
Struct. 36 (2007) 329–347.

[9] H.D. Kim, T. Shay, E.K. O’Shea, A. Regev, Transcriptional regulatory circuits:
predicting numbers from alphabets, Science 325 (5939) (2009) 429–432.

[10] M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, R. Guthke, Gene regulatory
network inference: data integration in dynamic models-a review, BioSystems
96 (1) (2009) 86–103.

[11] FANTOM Consortium, H. Suzuki, A.R. Forrest, E. van Nimwegen, C.O. Daub, P.J.
Balwierz, K.M. Irvine, T. Lassmann, T. Ravasi, Y. Hasegawa, M.J. de Hoon, S.
Katayama, K. Schroder, P. Carninci, Y. Tomaru, M. Kanamori-Katayama, A.
Kubosaki, A. Akalin, Y. Ando, E. Arner, M. Asada, H. Asahara, T. Bailey, V.B. Bajic,
D. Bauer, A.G. Beckhouse, N. Bertin, J. Björkegren, F. Brombacher, E. Bulger,
A.M. Chalk, J. Chiba, N. Cloonan, A. Dawe, J. Dostie, P.G. Engström, M. Essack,
G.J. Faulkner, J.L. Fink, D. Fredman, K. Fujimori, M. Furuno, T. Gojobori, J.
Gough, S.M. Grimmond, M. Gustafsson, M. Hashimoto, T. Hashimoto, M.
Hatakeyama, S. Heinzel, W. Hide, O. Hofmann, M. Hörnquist, L. Huminiecki, K.
Ikeo, N. Imamoto, S. Inoue, Y. Inoue, R. Ishihara, T. Iwayanagi, A. Jacobsen, M.
Kaur, H. Kawaji, M.C. Kerr, R. Kimura, S. Kimura, Y. Kimura, H. Kitano, H. Koga,
T. Kojima, S. Kondo, T. Konno, A. Krogh, A. Kruger, A. Kumar, B. Lenhard, A.
Lennartsson, M. Lindow, M. Lizio, C. Macpherson, N Maeda, C.A. Maher, M.
Maqungo, J. Mar, N.A. Matigian, H. Matsuda, J.S. Mattick, S. Meier, S. Miyamoto,
E. Miyamoto-Sato, K. Nakabayashi, Y. Nakachi, M. Nakano, S. Nygaard, T.
Okayama, Y. Okazaki, H. Okuda-Yabukami, V. Orlando, J. Otomo, M. Pachkov,
N. Petrovsky, C. Plessy, J. Quackenbush, A. Radovanovic, M. Rehli, R. Saito, A.
Sandelin, S. Schmeier, C. Schönbach, A.S. Schwartz, C.A. Semple, M. Sera, J.
Severin, K Shirahige, C. Simons, G. St Laurent, M. Suzuki, T. Suzuki, M,J. Sweet,
R.J. Taft, S. Takeda, Y. Takenaka, K. Tan, M.S. Taylor, R.D. Teasdale, J. Tegnér, S.
Teichmann, E. Valen, C. Wahlestedt, K. Waki, A. Waterhouse, C.A. Wells, O.
Winther, L. Wu, K. Yamaguchi, H. Yanagawa, J. Yasuda, M. Zavolan, D.A. Hume,
Riken Omics Science Center, T. Arakawa, S. Fukuda, K. Imamura, C. Kai, A.
Kaiho, T. Kawashima, C. Kawazu, Y. Kitazume, M. Kojima, H. Miura, K
Murakami, M. Murata, N. Ninomiya, H. Nishiyori, S. Noma, C. Ogawa, T.
Sano, C Simon, M. Tagami, Y. Takahashi, J. Kawai, Y. Hayashizaki, The
transcriptional network that controls growth arrest and differentiation in a
human myeloid leukemia cell line, Nat. Genet. 41 (5) (2009) 553–562.

[12] K.M. Summers, S. Raza, E. van Nimwegen, T.C. Freeman, D.A. Hume, Co-
expression of FBN1 with mesenchyme-specific genes in mouse cell lines:
implications for phenotypic variability in Marfan syndrome, Eur. J. Hum.
Genet. 18 (11) (2010) 1209–1215.

[13] N. Aceto, N. Sausgruber, H. Brinkhaus, D. Gaidatzis, G. Martiny-Baron, G.
Mazzarol, S. Confalonieri, M. Quarto, G. Hu, P.J. Balwierz, M. Pachkov, S.J.
Elledge, E. van Nimwegen, M.B. Stadler, M. Bentires-Alj, Tyrosine phosphatase

http://refhub.elsevier.com/S1046-2023(15)30004-9/h0005
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0005
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0005
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0010
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0010
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0015
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0015
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0020
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0020
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0020
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0025
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0025
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0025
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0030
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0030
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0030
http://www.ncbi.nlm.nih.gov/pubmed/23332764
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0040
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0040
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0040
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0045
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0045
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0050
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0050
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0050
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0055
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0060
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0060
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0060
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0060
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0065
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0065
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0065


P.J. Pemberton-Ross et al. / Methods 85 (2015) 62–74 73
SHP2 promotes breast cancer progression and maintains tumor-initiating cells
via activation of key transcription factors and a positive feedback signaling
loop, Nat. Med. 18 (4) (2012) 529–537.

[14] E. Arner, N. Mejhert, A. Kulyte, P.J. Balwierz, M. Pachkov, M. Cormont, S.
Lorente-Cebrian, A. Ehrlund, J. Laurencikiene, P. Heden, K. Dahlman-Wright,
J.F. Tanti, Y. Hayashizaki, M. Ryden, I. Dahlman, E. van Nimwegen, C.O. Daub, P.
Arner, Adipose tissue microRNAs as regulators of CCL2 production in human
obesity, Diabetes 61 (8) (2012) 1986–1993.

[15] J. Perez-Schindler, S. Summermatter, S. Salatino, F. Zorzato, M. Beer, P.J.
Balwierz, E. van Nimwegen, J.N. Feige, J. Auwerx, C. Handschin, The
corepressor NCoR1 antagonizes PGC-alpha and estrogen-related receptor
alpha in the regulation of skeletal muscle function and oxidative
metabolism, Mol. Cell. Biol. 32 (24) (2012) 4913–4924.

[16] N. Tiwari, N. Meyer-Schaller, P. Arnold, H. Antoniadis, M. Pachkov, E. van
Nimwegen, G. Christofori, Klf4 is a transcriptional regulator of genes critical
for EMT, including Jnk1 (Mapk8), PLoS ONE 8 (2) (2013) e57329.

[17] S.J. Vervoort, A.R. Lourenco, R. van Boxtel, P.J. Coffer, SOX4 mediates TGF-beta-
induced expression of mesenchymal markers during mammary cell epithelial
to mesenchymal transition, PLoS ONE 8 (1) (2013) e53238.

[18] P.S. Eisele, S. Salatino, J. Sobek, M.O. Hottiger, C. Handschin, The peroxisome
proliferator-activated receptor c coactivator 1a/b (PGC-1) coactivators repress
the transcriptional activity of NF-jB in skeletal muscle cells, J. Biol. Chem. 288
(4) (2013) 2246–2260.

[19] T. Suzuki, M. Nakano-Ikegaya, H. Yabukami-Okuda, M. de Hoon, J. Severin, S.
Saga-Hatano, J.W. Shin, A. Kubosaki, C. Simon, Y. Hasegawa, Y. Hayashizaki, H.
Suzuki, Reconstruction of monocyte transcriptional regulatory network
accompanies monocytic functions in human fibroblasts, PLoS ONE 7 (3)
(2012) e33474.

[20] R. Hasegawa, Y. Tomaru, M. de Hoon, H. Suzuki, Y. Hayashizaki, J.W. Shin,
Identification of ZNF395 as a novel modulator of adipogenesis, Exp. Cell Res.
319 (3) (2013) 68–76.

[21] N. Tiwari, V.K. Tiwari, L. Waldmeier, P.J. Balwierz, P. Arnold, M. Pachkov, N.
Meyer-Schaller, D. Schubeler, E. van Nimwegen, G. Christofori, Sox4 is a master
regulator of epithelial-mesenchymal transition by controlling Ezh2 expression
and epigenetic reprogramming, Cancer Cell 23 (6) (2013) 768–783.

[22] F. Meier-Abt, E. Milani, T. Roloff, H. Brinkhaus, S. Duss, D.S. Meyer, I. Klebba, P.J.
Balwierz, E. van Nimwegen, M. Bentires-Alj, Parity induces differentiation and
reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/
progenitor cells isolated from mouse mammary epithelium, Breast Cancer Res.
15 (2) (2013) R36.

[23] A.J. Gruber, W.A. Grandy, P.J. Balwierz, Y.A. Dimitrova, M. Pachkov, C. Ciaudo,
E.v. Nimwegen, M. Zavolan, Embryonic stem cell-specific microRNAs
contribute to pluripotency by inhibiting regulators of multiple
differentiation pathways, Nucleic Acids Res. 42 (14) (2014) 9313–9326.

[24] M. Baresic, S. Salatino, B. Kupr, E. van Nimwegen, C. Handschin, Transcriptional
network analysis in muscle reveals AP-1 as a partner of PGC-a in the
regulation of the hypoxic gene program, Mol. Cell. Biol. 34 (16) (2014) 2996–
3012.

[25] M. Diepenbruck, L. Waldmeier, R. Ivanek, P. Berninger, P. Arnold, E. van
Nimwegen, G. Christofori, Tead2 expression levels control the subcellular
distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal
transition, J. Cell. Sci. 127 (Pt 7) (2014) 1523–1536.

[26] R. Luisier, E.B. Unterberger, J.I. Goodman, M. Schwarz, J. Moggs, R. Terranova, E.
van Nimwegen, Computational modeling identifies key gene regulatory
interactions underlying phenobarbital-mediated tumor promotion, Nucleic
Acids Res. 42 (7) (2014) 4180–4195.

[27] M.T. Dill, Z. Makowska, G. Trincucci, A.J. Gruber, J.E. Vogt, M. Filipowicz, D.
Calabrese, I. Krol, D.T. Lau, L. Terracciano, E. van Nimwegen, V. Roth, M.H.
Heim, Pegylated IFN- regulates hepatic gene expression through transient Jak/
STAT activation, J. Clin. Invest. 124 (4) (2014) 1568–1581.

[28] P. Arnold, A. Scholer, M. Pachkov, P.J. Balwierz, H. Jørgensen, M.B. Stadler, E.
van Nimwegen, D. Schubeler, Modeling of epigenome dynamics identifies
transcription factors that mediate polycomb targeting, Genome Res. 23 (1)
(2013) 60–73.

[29] M. de Hoon, Y. Hayashizaki, Deep cap analysis gene expression (CAGE):
genome-wide identification of promoters, quantification of their expression,
and network inference, Biotechniques 44 (5) (2008) 627–628, 630, 632, http://
dx.doi.org/10.2144/000112802.

[30] P.J. Balwierz, P. Carninci, C.O. Daub, J. Kawai, Y. Hayashizaki, W.V. Belle, C.
Beisel, E. van Nimwegen, Methods for analyzing deep sequencing expression
data: constructing the human and mouse promoterome with deepcage data,
Genome Biol. 10 (7) (2009) R79.

[31] J. Harrow, A. Frankish, J.M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski,
B.L. Aken, D. Barrell, A. Zadissa, S. Searle, I. Barnes, A. Bignell, V. Boychenko, T.
Hunt, M. Kay, G. Mukherjee, J. Rajan, G. Despacio-Reyes, G. Saunders, C.
Steward, R. Harte, M. Lin, C. Howald, A. Tanzer, T. Derrien, J. Chrast, N. Walters,
S. Balasubramanian, B. Pei, M. Tress, J.M. Rodriguez, I. Ezkurdia, J. van Baren, M.
Brent, D. Haussler, M. Kellis, A. Valencia, A. Reymond, M. Gerstein, R. Guigo, T.J.
Hubbard, GENCODE: the reference human genome annotation for the ENCODE
project, Genome Res. 22 (9) (2012) 1760–1774.

[32] V. Matys, E. Fricke, R. Geffers, E. Gssling, M. Haubrock, R. Hehl, K. Hornischer, D.
Karas, A.E. Kel, O.V. Kel-Margoulis, D.-U. Kloos, S. Land, B. Lewicki-Potapov, H.
Michael, R. Mnch, I. Reuter, S. Rotert, H. Saxel, M. Scheer, S. Thiele, E.
Wingender, TRANSFAC: transcriptional regulation, from patterns to profiles,
Nucleic Acids Res. 31 (1) (2003) 374–378.
[33] A. Mathelier, X. Zhao, A.W. Zhang, F. Parcy, R. Worsley-Hunt, D.J. Arenillas, S.
Buchman, C.Y. Chen, A. Chou, H. Ienasescu, J. Lim, C. Shyr, G. Tan, M. Zhou, B.
Lenhard, A. Sandelin, W.W. Wasserman, JASPAR 2014: an extensively
expanded and updated open-access database of transcription factor binding
profiles, Nucleic Acids Res. 42 (2014) D142–D147 (Database issue).

[34] P. Arnold, I. Erb, M. Pachkov, N. Molina, E. van Nimwegen, Motevo: integrated
bayesian probabilistic methods for inferring regulatory sites and motifs on
multiple alignments of dna sequences, Bioinformatics 28 (4) (2012) 487–494.
<http://bioinformatics.oxfordjournals.org/content/28/4/487.abstract>.

[35] R.C. Friedman, K.K.-H. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs
are conserved targets of microRNAs, Genome Res. 19 (1) (2009) 92–105,
http://dx.doi.org/10.1101/gr.082701.108.

[36] M. Pachkov, P.J. Balwierz, P. Arnold, E. Ozonov, E. van Nimwegen,
SwissRegulon, a database of genome-wide annotations of regulatory sites:
recent updates, Nucleic Acids Res. 41 (2013) D214–D220. <http://www.ncbi.
nlm.nih.gov/pubmed/23180783> (Database issue).

[37] H. Ltkepohl, New Introduction to Multiple Time Series Analysis, Springer
Publishing Company, Incorporated, 2007.

[38] D. Barber, Bayesian Reasoning and Machine Learning, Cambridge University
Press, 2012.

[39] W. Penny, S. Roberts, Bayesian multivariate autoregressive models with
structured priors, IEEE Proc. Vision Image Signal Process. 149 (1) (2002) 33–41,
http://dx.doi.org/10.1049/ip-vis:20020149.

[40] S. Roberts, W. Penny, Variational bayes for generalized autoregressive models,
IEEE Trans. Signal Process. 50 (9) (2002) 2245–2257, http://dx.doi.org/
10.1109/TSP.2002.801921.

[41] Y. Wada, Y. Ohta, M. Xu, S. Tsutsumi, T. Minami, K. Inoue, D. Komura, J.
Kitakami, N. Oshida, A. Papantonis, A. Izumi, M. Kobayashi, H. Meguro, Y.
Kanki, I. Mimura, K. Yamamoto, C. Mataki, T. Hamakubo, K. Shirahige, H.
Aburatani, H. Kimura, T. Kodama, P.R. Cook, S. Ihara, A wave of nascent
transcription on activated human genes, Proc. Natl. Acad. Sci. U.S.A. 106 (43)
(2009) 18357–18361, http://dx.doi.org/10.1073/pnas.0902573106.

[42] K. Inoue, M. Kobayashi, K. Yano, M. Miura, A. Izumi, C. Mataki, T. Doi, T.
Hamakubo, P.C. Reid, D.A. Hume, M. Yoshida, W.C. Aird, T. Kodama, T. Minami,
Histone deacetylase inhibitor reduces monocyte adhesion to endothelium
through the suppression of vascular cell adhesion molecule-1 expression,
Arterioscler. Thromb. Vasc. Biol. 26 (12) (2006) 2652–2659, http://dx.doi.org/
10.1161/01.ATV.0000247247.89787.e7.

[43] H. Harada, E. Takahashi, S. Itoh, K. Harada, T.A. Hori, T. Taniguchi, Structure and
regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes:
implications for a gene network in the interferon system, Mol. Cell Biol. 14 (2)
(1994) 1500–1509.

[44] K. Calame, Activation-dependent induction of Blimp-1, Curr. Opin. Immunol.
20 (3) (2008) 259–264.

[45] C. Lien, C.M. Fang, D. Huso, F. Livak, R. Lu, P.M. Pitha, Critical role of IRF-5 in
regulation of B-cell differentiation, Proc. Natl. Acad. Sci. U.S.A. 107 (10) (2010)
4664–4668.

[46] G.M. Doody, M.A. Care, N.J. Burgoyne, J.R. Bradford, M. Bota, C. Bonifer, D.R.
Westhead, R.M. Tooze, An extended set of PRDM1/BLIMP1 target genes links
binding motif type to dynamic repression, Nucleic Acids Res. 38 (16) (2010)
5336–5350.

[47] A. Matsukawa, M.H. Kaplan, C.M. Hogaboam, N.W. Lukacs, S.L. Kunkel, Pivotal
role of signal transducer and activator of transcription (Stat)4 and Stat6 in the
innate immune response during sepsis, J. Exp. Med. 193 (6) (2001) 679–688.

[48] X.L. Aranguren, M. Beerens, G. Coppiello, C. Wiese, I. Vandersmissen, A. Lo
Nigro, C.M. Verfaillie, M. Gessler, A. Luttun, COUP-TFII orchestrates venous and
lymphatic endothelial identity by homo- or hetero-dimerisation with PROX1,
J. Cell. Sci. 126 (Pt 5) (2013) 1164–1175.

[49] X. Li, M.J. Large, C.J. Creighton, R.B. Lanz, J.W. Jeong, S.L. Young, B.A. Lessey,
W.A. Palomino, S.Y. Tsai, F.J. Demayo, COUP-TFII regulates human endometrial
stromal genes involved in inflammation, Mol. Endocrinol. 27 (12) (2013)
2041–2054.

[50] L. Escoubet-Lozach, C. Benner, M.U. Kaikkonen, J. Lozach, S. Heinz, N.J. Spann,
A. Crotti, J. Stender, S. Ghisletti, D. Reichart, C.S. Cheng, R. Luna, C. Ludka, R.
Sasik, I. Garcia-Bassets, A. Hoffmann, S. Subramaniam, G. Hardiman, M.G.
Rosenfeld, C.K. Glass, Mechanisms establishing TLR4-responsive activation
states of inflammatory response genes, PLoS Genet. 7 (12) (2011) e1002401.

[51] L.H. Glimcher, XBP1: the last two decades, Ann. Rheum. Dis. 69 (Suppl 1)
(2010) 67–71.

[52] P.S. Gargalovic, N.M. Gharavi, M.J. Clark, J. Pagnon, W.-P. Yang, A. He, A. Truong,
T. Baruch-Oren, J.A. Berliner, T.G. Kirchgessner, A.J. Lusis, The unfolded protein
response is an important regulator of inflammatory genes in endothelial cells,
Arterioscler. Thromb. Vasc. Biol. 26 (11) (2006) 2490–2496, http://dx.doi.org/
10.1161/01.ATV.0000242903.41158.a1.

[53] M. Civelek, E. Manduchi, R.J. Riley, C.J. Stoeckert Jr, P.F. Davies, Chronic
endoplasmic reticulum stress activates unfolded protein response in arterial
endothelium in regions of susceptibility to atherosclerosis, Circ. Res. 105 (5)
(2009) 453–461, http://dx.doi.org/10.1161/CIRCRESAHA.109.203711.

[54] R. Hu, A. Warri, L. Jin, A. Zwart, R.B. Riggins, H.B. Fang, R. Clarke, NF-jB
signaling is required for XBP1 (unspliced and spliced)-mediated effects on
antiestrogen responsiveness and cell fate decisions in breast cancer, Mol. Cell.
Biol. 35 (2) (2015) 379–390.

[55] A. Kaser, A.-H. Lee, A. Franke, J.N. Glickman, S. Zeissig, H. Tilg, E.E.S.
Nieuwenhuis, D.E. Higgins, S. Schreiber, L.H. Glimcher, R.S. Blumberg, XBP1
links ER stress to intestinal inflammation and confers genetic risk for human

http://refhub.elsevier.com/S1046-2023(15)30004-9/h0065
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0065
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0065
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0070
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0070
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0070
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0070
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0070
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0075
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0075
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0075
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0075
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0075
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0080
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0080
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0080
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0085
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0085
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0085
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0090
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0090
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0090
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0090
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0090
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0090
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0090
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0090
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0095
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0095
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0095
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0095
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0095
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0100
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0100
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0100
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0105
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0105
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0105
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0105
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0110
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0110
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0110
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0110
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0110
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0115
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0115
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0115
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0115
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0120
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0120
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0120
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0120
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0120
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0125
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0125
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0125
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0125
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0130
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0130
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0130
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0130
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0135
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0135
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0135
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0135
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0140
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0140
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0140
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0140
http://dx.doi.org/10.2144/000112802
http://dx.doi.org/10.2144/000112802
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0150
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0150
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0150
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0150
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0155
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0155
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0155
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0155
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0155
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0155
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0155
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0155
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0160
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0160
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0160
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0160
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0160
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0165
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0165
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0165
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0165
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0165
http://bioinformatics.oxfordjournals.org/content/28/4/487.abstract
http://dx.doi.org/10.1101/gr.082701.108
http://www.ncbi.nlm.nih.gov/pubmed/23180783
http://www.ncbi.nlm.nih.gov/pubmed/23180783
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0185
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0185
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0185
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0190
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0190
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0190
http://dx.doi.org/10.1049/ip-vis:20020149
http://dx.doi.org/10.1109/TSP.2002.801921
http://dx.doi.org/10.1109/TSP.2002.801921
http://dx.doi.org/10.1073/pnas.0902573106
http://dx.doi.org/10.1161/01.ATV.0000247247.89787.e7
http://dx.doi.org/10.1161/01.ATV.0000247247.89787.e7
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0215
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0215
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0215
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0215
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0220
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0220
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0225
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0225
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0225
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0230
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0230
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0230
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0230
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0235
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0235
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0235
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0240
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0240
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0240
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0240
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0245
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0245
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0245
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0245
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0250
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0250
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0250
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0250
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0250
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0255
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0255
http://dx.doi.org/10.1161/01.ATV.0000242903.41158.a1
http://dx.doi.org/10.1161/01.ATV.0000242903.41158.a1
http://dx.doi.org/10.1161/CIRCRESAHA.109.203711
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0270
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0270
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0270
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0270
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0270


74 P.J. Pemberton-Ross et al. / Methods 85 (2015) 62–74
inflammatory bowel disease, Cell 134 (5) (2008) 743–756, http://dx.doi.org/
10.1016/j.cell.2008.07.021.

[56] M. Kitamura, Control of NF-kappaB and inflammation by the unfolded protein
response, Int. Rev. Immunol. 30 (2011) 4–15.

[57] J. Li, J.J. Wang, S.X. Zhang, Preconditioning with endoplasmic reticulum stress
mitigates retinal endothelial inflammation via activation of X-box binding
protein 1, J. Biol. Chem. 286 (6) (2011) 4912–4921, http://dx.doi.org/10.1074/
jbc.M110.199729.

[58] L.P. Zalmas, X. Zhao, A.L. Graham, R. Fisher, C. Reilly, A.S. Coutts, N.B. La
Thangue, DNA-damage response control of E2F7 and E2F8, EMBO Rep. 9 (3)
(2008) 252–259.

[59] N.M. Wheelhouse, Y.S. Chan, S.E. Gillies, H. Caldwell, J.A. Ross, D.J. Harrison, S.
Prost, TNF-alpha induced DNA damage in primary murine hepatocytes, Int. J.
Mol. Med. 12 (6) (2003) 889–894.

[60] M.P. Gantier, H.J. Stunden, C.E. McCoy, M.A. Behlke, D. Wang, M. Kaparakis-
Liaskos, S.T. Sarvestani, Y.H. Yang, D. Xu, S.C. Corr, E.F. Morand, B.R. Williams, A
miR-19 regulon that controls NF-B signaling, Nucleic Acids Res. 40 (16) (2012)
8048–8058.

[61] J.T. Mendell, miRiad roles for the miR-17-92 cluster in development and
disease, Cell 133 (2) (2008) 217–222.

[62] K. Woods, J.M. Thomson, S.M. Hammond, Direct regulation of an oncogenic
micro-RNA cluster by E2F transcription factors, J. Biol. Chem. 282 (4) (2007)
2130–2134.

[63] J. Chen, Z. Liu, Y. Yang, In vitro screening of LPS-induced miRNAs in leukocytes
derived from cord blood and their possible roles in regulating TLR signals,
Pediatr. Res. 75 (5) (2014) 595–602.

[64] J. Wu, J. Qian, C. Li, L. Kwok, F. Cheng, P. Liu, C. Perdomo, D. Kotton, C. Vaziri, C.
Anderlind, A. Spira, W.V. Cardoso, J. Lu, miR-129 regulates cell proliferation by
downregulating Cdk6 expression, Cell Cycle 9 (9) (2010) 1809–1818.

[65] M. Karaayvaz, H. Zhai, J. Ju, miR-129 promotes apoptosis and enhances
chemosensitivity to 5-fluorouracil in colorectal cancer, Cell Death Dis. 4 (2013)
e659.

http://dx.doi.org/10.1016/j.cell.2008.07.021
http://dx.doi.org/10.1016/j.cell.2008.07.021
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0280
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0280
http://dx.doi.org/10.1074/jbc.M110.199729
http://dx.doi.org/10.1074/jbc.M110.199729
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0290
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0290
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0290
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0295
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0295
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0295
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0300
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0300
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0300
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0300
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0305
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0305
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0310
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0310
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0310
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0315
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0315
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0315
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0320
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0320
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0320
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0325
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0325
http://refhub.elsevier.com/S1046-2023(15)30004-9/h0325

	ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data
	1 Introduction
	1.1 Using gene expression data to infer regulatory networks
	1.2 Motif activity response analysis
	1.3 Toward a causal dynamics of motif activities

	2 Methods
	2.1 Motif activity response analysis
	2.1.1 Expression data processing
	2.1.2 Regulatory site prediction
	2.1.3 Bayesian inference using a linear model
	2.1.4 Interpretation of the linear model

	2.2 ARMADA: an autoregressive model of motif activity dynamics
	2.3 Algorithm output
	2.3.1 Evidence score for interactions between regulators
	2.3.2 Graphical representation of the regulatory network
	2.3.3 Ability to recapture ISMARA activity dynamics
	2.3.4 Long-term behavior of the predicted dynamics


	3 Results
	4 Discussion
	Author’s contributions
	Acknowledgements
	References


