
Methods 85 (2015) 90–99
Contents lists available at ScienceDirect

Methods

journal homepage: www.elsevier .com/locate /ymeth
Quantifying the strength of miRNA–target interactions
http://dx.doi.org/10.1016/j.ymeth.2015.04.012
1046-2023/� 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: mihaela.zavolan@unibas.ch (M. Zavolan).
Jeremie Breda, Andrzej J. Rzepiela, Rafal Gumienny, Erik van Nimwegen, Mihaela Zavolan ⇑
Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Klingelbergstrasse 50–70, 4056 Basel, Switzerland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 February 2015
Received in revised form 9 April 2015
Accepted 10 April 2015
Available online 16 April 2015

Keywords:
miRNA
MIRZA
CLIP
CLASH
Non-canonical miRNA binding
miRNA target prediction
We quantify the strength of miRNA–target interactions with MIRZA, a recently introduced biophysical
model. We show that computationally predicted energies of interaction correlate strongly with the
energies of interaction estimated from biochemical measurements of Michaelis–Menten constants. We
further show that the accuracy of the MIRZA model can be improved taking into account recently
emerged experimental data types. In particular, we use chimeric miRNA–mRNA sequences to infer a
MIRZA–CHIMERA model and we provide a framework for inferring a similar model from measurements
of rate constants of miRNA–mRNA interaction in the context of Argonaute proteins. Finally, based on a
simple model of miRNA-based regulation, we discuss the importance of interaction energy and its vari-
ability between targets for the modulation of miRNA target expression in vivo.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
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1. Introduction

MicroRNAs (miRNAs) have emerged as important regulators of
gene expression across a wide range of species. They are endoge-
nously encoded small RNAs that are incorporated in ribonucleo-
protein complexes also containing an Argonaute (Ago) protein,
which they guide to other RNA targets to modulate their expres-
sion [1]. Although comparative genomic analyses indicate that a
miRNA has on average hundreds of targets [2], how these predicted
targets respond to changes in miRNA concentration is not entirely
clear. The best-documented outcome of miRNA–target interaction
is target destabilization [3], which is typically modest, but can give
rise to interesting behaviors of miRNA-containing regulatory net-
works. These include the ‘threshold–linear’ response of miRNA tar-
gets to their transcriptional induction [4,5] and the ultrasensitivity
of target expression to the miRNA concentration [6]. The steady-
state level of a given mRNA reflects the balance between transcrip-
tion and decay. If the mRNA decay rate were constant, not modu-
lated by miRNAs, the mRNA level would be expected to increase
linearly with the transcription rate. However, if transcriptional
induction occurs in the presence of a cognate miRNA, the target
is expected to respond in a ‘threshold–linear’ manner: when the
transcription rate is low, the few mRNA molecules that are pro-
duced are bound by the cognate miRNA and degraded. Once the
transcription rate is sufficiently high for the mRNAs to saturate
the miRNA–Ago complexes, the mRNAs escape the miRNA-induced
repression and accumulate at a rate proportional to their transcrip-
tion rate. The location of the threshold depends on the abundance
of miRNA–Ago complexes, while the steepness of the transition
between the two regimes depends additionally on the affinity of
miRNA–target interaction.

We can illustrate these concepts with a simple model that
focuses on the interaction of a single miRNA target with the
miRNA and on the effect of this interaction on the rate of target
decay, ignoring the possible effect of miRNAs on translation, the
possible competition between targets for miRNAs and vice versa,
other secondary effects such as feedbacks on target transcription
rates, etc. Although these aspects most likely are relevant in
in vivo situations, they go beyond the scope of our present study.
Let us consider a miRNA target that is transcribed at rate a
[mol s�1] and decays with rate d [s�1]. The free miRNA target F
[mol] associates at rate b [mol�1 s�1] with miRNA–Ago complexes
whose total concentration in a cell we assume to be constant, R
[mol]. This leads to the formation of ternary target–miRNA–Ago
complexes whose concentration we denote by A [mol], which can
either dissociate into their components with rate . [s�1], or fall
apart due to the degradation of the miRNA target, which occurs
at rate dd [s�1]. The dynamics of these molecular species can then
be described by the following equations:

dF
dt
¼ a� dF � bðR� AÞF þ qA ð1Þ

dA
dt
¼ bðR� AÞF � qA� ddA ð2Þ
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Solving this system of differential equations we obtain the
dependency between the concentration of the free (and total) tar-
get and its transcription rate, which has the threshold–linear form.
Fig. 1 shows how the concentration of the free mRNA target
responds to changes in target transcription rate, assuming values
for the parameters d = 0.1 1/h and d = 1.55, which we have recently
estimated [7]. To illustrate the expected behavior of high and low
affinity targets we use two distinct values of the rate of ternary
complex formation b, namely 0.24 and 2.4 cell/molecule/hour,
and two distinct values of the rate of ternary complex dissociation
q, namely 2.16 and 21.6 1/h. To further explore the behavior of tar-
gets of low, intermediate and high abundance miRNAs, we con-
sider three total concentrations R of miRNA–Ago complexes,
namely 10, 100 and 1000 molecules/cell. Our model thus assumes
that the total concentration of miRNA–Ago complexes (free or
bound to targets) is constant and does not respond to changes in
miRNA target concentration. Although it remains unclear whether
this assumption holds in vivo, data showing that the targets of
endogenous miRNAs are up-regulated in response to transfection
of exogenous siRNAs [8] suggest that at least the number of
Argonaute molecules in a cell does not scale with the number of
small RNAs that are present in cells. It can be observed that the
transcription rate at which the target escapes miRNA regulation
and accumulates rapidly depends on the total concentration of
miRNA–Ago complexes, and that the transition is sharper for tar-
gets that have a higher rate of association with miRNA–Ago com-
plexes. These behaviors have been observed in experiments with
reporter constructs [5,9].

So far we discussed the expected behavior of an individual
miRNA target. However, because a miRNA probably has hundreds
of targets, one of the strongly debated questions in the field is
whether changes in expression of one of these targets affects the
expression of the others by modulating their interaction with the
common targeting miRNA. Computational studies have shown that
the targets of a miRNA are expected to respond in an asymmetrical
manner, changes in expression of high-affinity targets affecting the
binding of the lower affinity targets but not the other way around
[10,11]. Whether these behaviors indeed occur in vivo is largely
unknown. Rather, it has become clear that progress in understand-
ing the impact of miRNAs on gene expression requires accurate
measurements of miRNA abundance in single cells, estimates of
the number of binding sites that a miRNA typically accesses within
a cell, and estimates of the affinity of interaction between a miRNA
and its multiple targets.

The abundance of individual miRNAs in mammalian cells varies
over orders of magnitude (see for e.g. [12]). MiR-122, a highly-
expressed, hepatocyte-specific miRNA can reach 66,000 copies
per cell in mouse liver cells and 135,000 in primary human
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Fig. 1. Accumulation of miRNA targets as a result of increasing transcription, in the presen
correspond to three total concentrations of miRNA–Ago complexes of 10 (red), 100 (blue
miRNA–Ago association b = 0.24 cell/molecules/hour, and thick lines to 10-fold higher
correspond to low rates of target–miRNA–Ago dissociation of q = 2.16 1/h, and thick lin
hepatocytes [13]. The more typical range for well-expressed
miRNAs is 1000–10,000 molecules per cell [12], which can proba-
bly be accommodated by the population of Ago proteins, whose
abundance per cell has been estimated to be �140,000–170,000
molecules (in a mouse epidermis and a human melanoma cell)
[14].

The number of target sites that a miRNA can access within an
individual cell remains hotly debated [9]. Recently developed
methods have enabled quantification of mRNA species within sin-
gle cells, although the mRNA capture rate appears to be low,
around 10% [15]. A cursory analysis of the published mouse embry-
onic stem cell (ESC) single cell data shows that among the mRNAs
that were captured, miRNA targets occur in a handful of copies
such that the top 100 predicted targets of individual miRNAs yield
a few hundred captured target molecules per cell (Fig. 2). The tar-
gets of the mouse ESC-specific miR-294 are less abundant, �1 cap-
tured mRNA per cell, compared to targets of the ubiquitously
expressed miR-16 and of some miRNAs that are expressed in dif-
ferentiated tissues (e.g. the general differentiation marker let-7,
the neuron-specific miR-124, the muscle-specific miR-1 and the
epithelia-specific miR-200a), which were captured in 2–5 copies,
on average. Assuming a capture rate of 10%, a mouse ESC thus
expresses on average 10–50 molecules per miRNA target. The argu-
ment can be made that our estimation ignores the fact that ESCs
already contain miRNAs which have reduced the levels of their tar-
gets and that we have thus underestimated the number of miRNA
targets. Indeed, to improve these estimates we would need to
quantify mRNA abundance in ESCs devoid of miRNAs (Drosha/
Dicer knock-out ESCs). However, many studies in which miRNAs
have been transfected in cells in which they were not previously
expressed found only modest changes (less than 2-fold) in target
levels and thereby decay rates (see for e.g. [7]). If a miRNA does tar-
get over a hundred distinct mRNA species, binding to perhaps mul-
tiple sites within a mRNA, the number of putative binding sites of a
miRNA in a single cell can reach 103–104. Precise estimates of the
number of binding sites and the ratio of binding sites to miRNA–
Ago molecules are essential for understanding the behavior of
the targets in vivo, in individual cells.

2. Inferring the strength of miRNA–target interactions from
experimentally-determined target sites; theory

An important breakthrough in the experimental identification
of miRNA targets came with the development of methods based
on the crosslinking and immunoprecipitation of Argonaute
proteins (Ago-CLIP) [17,18], which enabled the capture of in vivo
miRNA targets in high-throughput. The basic principle is to
crosslink proteins to RNAs in vivo with ultraviolet light,
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Fig. 2. Distribution of the number of targets of individual miRNAs that were
captured from individual ESCs [15]. For each miRNA, the number of molecules of
top 100 targets that were predicted with the seed-MIRZA-G-C miRNA target
prediction program [16] were counted. The actual number of molecules was
probably 10-fold higher (assuming that the capture rate of mRNA molecules in
mRNA-seq is �10%).
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immunoprecipitate the protein of interest and associated RNAs
with a specific antibody, and prepare the protein-bound RNA frag-
ments for deep sequencing. The resulting reads can be used not
only to identify the mRNAs that were bound by miRNA-guided
Argonaute proteins, but also to learn more about how miRNAs
interact with their targets. For example, to describe this interac-
tion, in previous work we introduced a model (MIRZA) that
includes besides parameters for A–U, G–C, and G–U base pairs,
for symmetrical and asymmetrical loops, a set of parameters
corresponding to miRNA position-dependent contributions to the
interaction energy [19]. The latter could result from the interaction
taking place within the context of the Argonaute protein (Fig. 3).
Parameter values were inferred within a probabilistic framework,
Fig. 3. Crystal structure of the human AGO-2 protein (silver) in complex with miR-
20a (red) [22]. The ‘seed’ nucleotides are visible in the structure because the
conformational entropy of the miRNA 50 end in the binding pocket of AGO-2 is
limited. The residues 11–16 of the miRNA are not resolved due to their
conformational freedom. The terminal 30 end nucleotides, that contribute to the
anchoring of the miRNA within AGO-2, are again visible.
by maximizing the likelihood of the CLIP data. They confirmed
the known importance of the miRNA 50 end (also known as ‘seed’
[2]) in the interaction with the target. However, application of
the model to the CLIP sites suggested that many are bound in a
‘non-canonical’ manner (i.e. without perfect complementarity to
the miRNA seed) and that the proportion of non-canonical sites
that were captured for a given miRNA with CLIP increased with
the abundance of the miRNA [19]. Because MIRZA provides a
quantitative measure of the strength of interaction of miRNAs with
target sites, it can be used not only for genome-wide prediction of
binding sites but also to study miRNA-dependent regulation in
deeper quantitative detail. In a parallel development, a next step
in the experimental identification of miRNA target sites has been
taken with the simultaneous capture of interacting miRNAs and
target sites as chimeric sequence reads [20,21]. Initial analysis of
these data suggested that miRNAs may differ in their mode of
interaction with the targets.

Thus, important open questions for the quantitative modeling
of miRNA–target interactions are: what approach yields the most
predictive model; what structure does this model have; are
miRNA-specific models necessary to explain the experimental
data? In the following we describe the miRNA–target interaction
models that we inferred with the MIRZA approach from various
types of high-throughput data, and we evaluate their ability to
identify functional miRNA targets, that are destabilized upon
transfection of the cognate miRNA.
2.1. Input data: Argonaute-bound RNA fragments. Output: general
model of miRNA–target interaction MIRZA–CLIP

A target site m of a miRNA l can be in one of two states, namely
bound or unbound to the miRNA. Denoting the energies of the

bound and unbound states by EB and EB, the probability to find

the site in bound state will be given by PB ¼ eEB

eEBþe
EB

. The ‘bound’

state consists in fact of all ways in which the miRNA is hybridized
with the target in the context of the Ago protein. Denoting by E (m,
l, r) the energy of the state in which site m is bound to miRNA l in
configuration r, eEB is proportional to RreE(m,l,r). Similar to the
standard model of RNA–RNA interaction [23], E (m, l, r) can be
written in terms of a small number of parameters such as the
energy of A–U, G–C and G–U base pairs, the energy for opening a
loop in the miRNA–target hybrid, energies for extending a loop
by a nucleotide in the miRNA, or in the mRNA, or by two unpaired
nucleotides in the miRNA and target. In addition, specific to the
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Fig. 4. The 27 parameters of various MIRZA model variants. From left to right, base-
pair parameters (A–U, G–C, G–U = 0), loop parameters (o: opening a loop, m: looped
out mRNA nucleotide, mi: looped out miRNA nucleotide, s: symmetrical loop) and
the 21 positional parameters are shown. The parameters of the MIRZA–CLIP model
are shown in black, those of the MIRZA–CHIMERA model in blue, those of the
MIRZA-Class I model in cyan and those of the MIRZA-Class IV model in red.
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MIRZA model of miRNA–target interaction [19] is a set of miRNA-
position-specific energies (Fig. 4). The logarithm of the ‘quality
score’ of a site for a miRNA that MIRZA computes can be viewed
as the energy of interaction between the miRNA and the target.
An efficient dynamic programming algorithm for computing target
quality scores has been proposed [19]. This enables one to infer the
parameters of the MIRZA model by maximizing the likelihood of
the Ago-CLIP data. Here we have repeated the analysis of the
�3000 Ago2-CLIP sites that were reproducibly isolated in multiple
CLIP experiments [19,24] to derived the baseline MIRZA–CLIP
model shown in Fig. 4.
2.2. Input data: chimeric miRNA–mRNA sequence reads. Output:
general model of miRNA–target interaction MIRZA–CHIMERA

As mentioned in the Introduction, Helwak et al. [20] designed
the Crosslinking and Sequencing of Hybrids approach (CLASH), in
which the interacting RNAs are ligated prior to sequencing, thereby
enabling the simultaneous capture of interacting miRNAs and tar-
get sites. These appear as ‘‘chimeric reads’’ each composed partly of
a miRNA and partly of the miRNA target. Grosswendt et al. [21]
subsequently reported that a substantial number of ligated
miRNA–target site chimeras can be found even in samples pre-
pared with a standard CLIP protocol. In contrast to Ago-CLIP, in
these data sets there is no uncertainty about the miRNA that
guided the interaction with each target site captured in the chi-
meras. Thus, in maximizing the likelihood of the data to infer a
MIRZA-type model, one only needs to sum over all the ways in
which the miRNA and target site in each chimera hybridizes with
each other (and not over the miRNAs that could have interacted
with the target site, as in the case of Ago-CLIP sites). We used
the miRNA-target site pairs that were inferred by Grosswendt
et al. from various PAR-CLIP and HITS-CLIP experiments (Table 1
and Supplementary Table 3 in [21]) to construct a general model
that could explain all these interactions. We called this model
MIRZA–CHIMERA. Compared to the MIRZA–CLIP model that we
inferred from Ago-CLIP data, MIRZA–CHIMERA seems to put less
emphasis on the miRNA seed (Fig. 4). The functional relevance of
these differences will be discussed in the following sections.
2.3. Input data: chimera of a specific miRNA with target sites. Output:
miRNA-specific model of interaction with the target

The CLASH study reported that some miRNAs, such as miR-92a
and miR-181b, interact with their targets predominantly through
their 30 rather than the 50 end, yielding ‘Class IV’ chimeras [20].
Other miRNAs such as those of the let-7 family were captured
rather in ‘Class I’ chimeras, in which the miRNA presumably inter-
acted through the ‘seed’. These observations suggest that the accu-
racy of miRNA target prediction could be improved through the use
of miRNA-specific models of interaction. We decided to test this
hypothesis here. However, because the available data sets [20,21]
contain a limited number of distinct target sites ligated to individ-
ual miRNAs, we inferred ‘Class’-specific rather than miRNA-specific
models. Concretely, from the data of Grosswendt et al. [21] we
Table 1
Chimeras of the indicated miRNAs, obtained from the data set of Grosswendt et al.
[21] were used to infer MIRZA-Class I and MIRZA-Class IV models.

MIRZA-
Class I

let-7a-5p, let-7e-5p, let-7f-5p, miR-10a-5p, miR-10b-5p, miR-
125a-5p, miR-125b-5p, miR-1260b, miR-1301-3p, miR-130b-
3p, miR-15b-5p, miR-17-5p, miR-183-5p, miR-185-5p, miR-
23a-3p, miR-27b-3p, miR-31-5p, miR-324-3p, miR-339-5p,
miR-34a-5p, miR-423-5p, miR-455-3p, miR-484, miR-744-5p

MIRZA-
Class IV

miR-181b-5p, miR-221-3p, miR-30c-5p, miR-30d-5p, miR-
320a, miR-361-5p, miR-92a-3p, miR-92b-3p
selected a total 2589 chimeras of 24 miRNAs (those that yielded
predominantly Class I chimeras in the data of Helwak et al. [20])
to train the ‘‘MIRZA-Class I’’ model and 949 chimeras of 8
miRNAs (those that yielded predominantly Class IV chimeras) to
train the ‘‘MIRZA-Class IV’’ model. The corresponding miRNAs are
listed in Table 1. The parameters of these models, shown in
Fig. 4, indicate a positive contribution of the seed positional
parameters in the MIRZA-Class I model, but not in the MIRZA-
Class IV model. However, Fig. 4 also shows a trend of positional
parameters to progressively decrease from the seed to the 30 end
in the MIRZA-Class IV model, but not in the MIRZA-Class I model.
We test the functional relevance of these differences in a subse-
quent section.

It has been recently observed that the miRNAs that were
reported to form Class IV hybrids have G/C-rich 30 ends [25]. We
reproduced these observations here (Fig. 5). Furthermore, we
found that the proportion of Class I hybrids that were captured
for a miRNA decreases with the G/C content of the miRNA 30 end,
while the proportion of Class IV hybrids shows the opposite trend
(Fig. 5). A possible explanation behind the different propensities of
different miRNAs to yield Class I or Class IV chimeras is that the G/
C-content of the miRNA 30 end stabilizes the interaction with the
target site, facilitates ligation and leads to an over-representation
of this type of sites among the chimeric sequences. This possibility
would need to be investigated in more detail before miRNA-speci-
fic modes of interaction are inferred from chimera data.
3. Results

3.1. Evaluating the models on biochemical data

The ‘quality score’ assigned to a site by the MIRZA model takes
into account all possible configurations in which the miRNA can
hybridize to the target site within the ternary miRNA–target
site–Ago complex, and provides an estimate of the binding energy
between the miRNA and the target site. Thus, if the model is accu-
rate, it should be able to predict the free energy of interaction
determined with biochemical approaches. The dissociation con-
stant KD, which is the ratio of the rates of dissociation (koff) and

association (kon) of molecules in a complex, KD ¼ koff
kon

, should be
related to the Gibbs free energy of interaction through the relation-

ship DG ¼ �kBT log 1
KD

� �
, where kB is the Boltzmann constant and T

is the temperature. Although only few measurements of miRNA–
target dissociation constants are available, particularly for mam-
malian systems, Wee et al. [26] measured a related constant,
namely the Michaelis–Menten constant. This is defined as

KM ¼ kcatþkoff
kon

, thus including besides the dissociation and associa-
tion rates the rate with which the miRNA catalyzes the target
cleavage. Wee et al. measured for KM’s for perfectly complementary
sequences (PM) and for sequences that have mismatches at differ-
ent positions along the miRNA (MM) in the context of Argonaute 1
protein of Drosophila melanogaster [26] and then correlated

log KPM
M

KMM
M

with the difference in the free energy of interaction of

the perfectly matched and mismatched hybrids given by the
RNAStructure software [27]. Computing this correlation separately
for duplexes in which mismatches were located at the 50 and 30

ends of the miRNA, respectively, Wee et al. concluded that the
standard base pairing rules apply to miRNA–Ago2–target com-
plexes [26]. We thus sought to use the measurements of Wee
et al. [26] to further validate the MIRZA models that we inferred
from CLIP data sets.

First, we compared the energy differences inferred from mea-
surements of KM’s with those predicted with the current version
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(5.7) of the RNAStructure software and with those predicted with
MIRZA-type models. As described by Wee et al. [26], we found rela-
tively good correlations between RNAStructure-based predictions
and experimental measurements, if we consider separately hybrids
with mismatches in the miRNA seed region (Spearman correlation
coefficient q = 0.81, p-value = 0.015) and in the miRNA 30 end
(Spearman correlation coefficient q = 0.4, p-value = 0.20).
However, considering all the hybrids together, the correlation is
rather poor (Spearman correlation coefficient q = 0.20), presum-
ably because the nearest neighbor model implemented in
RNAStructure does not appropriately describe interactions that
take place within RNA–protein complexes, where different nucleo-
tides in the RNA can have disproportionate contributions to the
energy of interaction.

In contrast, evaluating all of the hybrids within the MIRZA–CLIP
model yields predictions that are strongly correlated with the
experimental results (Spearman correlation coefficient q = 0.85,
p-value = 3.6e�09, 95% confidence interval = [0.71, 0.93]).
Interestingly, the MIRZA–CHIMERA model gives a slightly higher
correlation with the experimental data (Spearman correlation
coefficient q = 0.87, p-value = 3e�09, 95% confidence inter-
val = [0.73, 0.94]), although the difference is not significant. Thus,
these two models, that were inferred from different types of
sequenced miRNA target sites, predict remarkably well the ener-
gies of interaction between miRNAs and target sites that are
inferred from biochemical measurements (Fig. 6).
3.2. Genome-wide prediction of miRNA targets

One of the main applications of these models is in the genome-
wide prediction of miRNA binding sites. However, the predicted
energy of interaction between a miRNA and a target site is only
one of the factors that contributes to a functional interaction.
Other features of the target site have also been shown to be impor-
tant [28]. Thus, in recent work we sought to build on MIRZA and
develop a model that is suitable for accurate prediction of miRNA
binding sites genome-wide. The resulting MIRZA-G model com-
bines the MIRZA target quality score with the accessibility of the
target site, the G/U content of the region in which the site is
embedded, the relative location of the site in the transcript and,
optionally, with the degree of evolutionary conservation of the
putative target site (Fig. 7). MIRZA-G is trained by fitting a general-
ized linear model with a logit function to discriminate between
miRNA-complementary sites located in mRNAs that do and
mRNAs that do not respond to the transfection of the cognate
miRNAs [16]. Furthermore, because high-throughput studies
evaluate the effects of miRNAs at the level of transcripts and genes
rather than individual sites, MIRZA-G computes transcript/gene
scores, summing up the probabilities that individual target sites
have a functional impact. Using different MIRZA variants to com-
pute target quality scores for the MIRZA-G model we can test the
ability of these variants to predict which transcripts are most
affected by the transfection of individual miRNAs. Thus, we
employed the MIRZA–CLIP/CHIMERA/Class I/Class IV models
individually within the MIRZA-G framework to predict and rank
targets of individual miRNAs. Because different MIRZA variants
yield different distributions of target quality scores and in the gen-
ome-wide prediction of target sites we only consider putative sites
with a minimal ‘target quality’ score, we have used different
thresholds for different models. The weight of different features
of target sites within the MIRZA-G model were kept unchanged.

To determine a target quality score threshold for different
MIRZA variants we noted that ‘canonical’ interactions that involve
perfect pairing of the miRNA seed have the highest scores with all
MIRZA variants. Thus, we employed the procedure that we used
before for MIRZA–CLIP [16]. That is, with each MIRZA variant, we
assigned to each of the 2998 CLIPed sites from Khorshid et al.
[19] the most likely guiding miRNA. This was the miRNA with
the highest target quality score for the site given under the consid-
ered MIRZA model. We then predicted the structure of the most
likely hybrid between the target site and the guiding miRNA, and
divided the sites into canonical – those with perfect base-pairing
over nucleotides 2–8 of the miRNA or perfect pairing over nucleo-
tides 2–7 followed by an adenine (opposite position 1 in the
miRNA) – and non-canonical – all other sites. Based on the cumu-
lative distribution of target quality scores for canonical and non-
canonical sites, we set a threshold that allowed us to capture the
majority of canonical sites without including too many non-
canonical sites, that may be artifactually captured. For MIRZA–
CLIP a threshold of 50 captures 91% of canonical sites and 18%
non-canonical sites, for MIRZA–CHIMERA a threshold of 20 cap-
tures 97% canonical and 20% of non-canonical sites, for MIRZA-
Class I a threshold of 30 leads to the capture of 94% of the canonical
and 18% of non-canonical sites, while for MIRZA-Class IV a thresh-
old of 20 captures 94% of canonical target sites and 20% of the non-
canonical target sites.
3.3. Wide range of MIRZA quality scores across the targets of a given
miRNA

Although we do not focus on this aspect here, it has been pro-
posed that differences in affinity between targets may underlie
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asymmetries in the crosstalk of mRNAs that bind the same miRNAs
[10]. Thus, having shown that the target quality scores computed
with MIRZA models correlate very well with the affinities of
miRNA–target interactions measured with biochemical methods,
we wondered how much variation there is in the affinity of differ-
ent target sites for a miRNA. Therefore, we determined the MIRZA
target quality score for all the sites of all miRNAs that were consid-
ered in the genome-wide predictions with MIRZA-G. These had a
probability of being functional of at least 0.12 (see [16] for details).
For each miRNA we have divided the 0–10 range of MIRZA target
quality scores into bins of 0.2 and have shown the distribution of
the target sites of each miRNA as a heat-map, which each line
corresponding to a miRNA and the intensity of the color indicating
the density of target sites within a bin (Fig. 8). It can be seen that
the target sites of an individual miRNA span a range of �4 log units
or they can differ by �50-fold in the predicted affinity.



Table 2
Data sets of mRNA expression changes following miRNA transfection that were used
to test the MIRZA models.

References Data source (Gene
Expression Omnibus
(GEO) accession/URL)

miRNAs in the data set

Dahiya
et al.
[31]

GSE10150 miR-200c, miR-98

Frankel
et al.
[32]

GSE31397 miR-101

Gennarino
et al.
[33]

GSE12100 miR-26b, miR-98

Hudson
et al.
[34]

GSE34893 miR-106b

Leivonen
et al.
[35]

GSE14847 miR-206, miR-18a, mir-193b, miR-
302c

Linsley
et al.
[36]

GSE683 miR-103, miR-215, miR-17, miR-
192, let-7c, miR-106b, miR-16,
miR-20, miR-15a, miR-141, miR-
200a

Selbach
et al.
[37]

http://psilac.mdc-berlin.
de/download/

miR-155, let-7b, miR-30a, miR-1,
miR-16

Olive et al.
[38]

GSE53225 miR-92a
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3.4. Evaluation of the MIRZA models on miRNA transfection data

miRNAs have been reported to destabilize their mRNA targets,
inhibit their translation [1], and even to increase transcript stabil-
ity under specific circumstances [29]. Of these, perhaps the least
controversial is mRNA destabilization, which has been argued to
be the dominant mechanism behind the repressive effect of
miRNA, with translational repression playing a small, perhaps
more transient role [3]. The importance of this mechanism is fur-
ther underscored by observations that miRNA-complementary
sites that are conserved in evolution and sites that induce strongest
downregulation of their host transcripts upon miRNA transfection
have similar properties [28]. Furthermore, acting through the
miRNA pathway, small interfering RNAs (siRNA) also destabilize
many transcripts (the so-called ‘‘off-target’’ mRNAs) [30]. Thus, it
is reasonable to expect that the extent of mRNA destabilization
upon miRNA transfection is a robust measure of the strength of
interaction between a miRNA and the mRNA. Consequently, the
ranking assigned by a computational miRNA target prediction
method to mRNAs should correlate well with their change in
expression upon miRNA transfection. This is the assumption that
we make in discussing the relative performance of various models
for miRNA target prediction.

First, we tested whether the models can predict the mRNA
expression changes that were induced by individual transfections
of miRNAs. To this end, we used data corresponding to 26 miRNA
transfections into human cells and one transfection into mouse
cells (Table 2). The processing of the transfection data was
described extensively in [16]. For each type of MIRZA model of
miRNA–target interaction we used two variants of the genome-
wide MIRZA-G prediction model to predict sites. One of these con-
sidered the evolutionary conservation of the sites and the other did
not [16] (see Fig. 7). We sorted targets predicted by each of these
Fig. 8. Distribution of the MIRZA quality scores of target sites of individual miRNAs.
Each line corresponds to one miRNA and the intensity of the color indicates the
density of target sites within a particular range of target quality scores, computed
with MIRZA–CLIP.
models in the order of their prediction score. We then computed
the median log2 fold-change of the top N predicted transcripts as
a function of the number N of top targets considered. The average
profiles, computed over the 26 data sets, are shown in Fig. 9A–B.
We found that all four models perform as expected in predicting
miRNA targets genome-wide. Consistent with its slightly better
performance in predicting the in vitro-measured free energy of
interaction between miRNAs and target sites, the targets predicted
by the MIRZA–CHIMERA model are somewhat more downregu-
lated compared to the targets predicted with MIRZA–CLIP, particu-
larly when the evolutionary conservation of the sites is not taken
into account.

Next we asked whether Class I and Class IV-specific models are
more accurate in predicting targets of miRNAs that have been
found to yield predominantly Class I and Class IV chimeras, respec-
tively. As representatives of the first we chose the let-7 family of
miRNAs and as a representative of the latter the miR-92a.
Because we did not find transfection data for Class IV-chimera
forming human miRNAs, we used a data set obtained from mouse
cells transfected with the mouse miR-92a. The results, shown in
Fig. 9, panels C–D for let-7 and E–F for miR-92a, clearly indicate
that the general MIRZA–CLIP and MIRZA–CHIMERA models are
more accurate in predicting transcript downregulation upon
miRNA transfection than Class I/IV-specific models. Together with
the fact that the sites that are predicted with these models tend to
be canonical sites, these results indicate that the origin and rele-
vance of Class IV hybrids needs to be further investigated. As men-
tioned above, a possibility that needs to be ruled out is that the
experimental procedure for isolating miRNA–target hybrids via
chimeric sequences enriches for non-canonical hybrids that have
increased stability prior to ligation.

3.5. Inferring a MIRZA model from biochemical data

The results presented above indicate that the MIRZA–CLIP/
CHIMERA models explain well both the biochemical data as well
as the response of mRNAs to miRNA transfection. However,

http://psilac.mdc-berlin.de/download/
http://psilac.mdc-berlin.de/download/
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given the complexity of CLIP experiments and the indirect nature
of the resulting data, one wonders whether an even more accu-
rate model of miRNA–target interaction could not be derived
from in vitro measurements of interaction affinity as obtained
in the study of Wee et al. [26]. To gain further insight into the
design of an efficient experiment, we generated synthetic data
sets of hybrids, computed their pseudo-energies of interaction
with MIRZA–CLIP, and then asked how our ability to recover
the model parameters from the synthetic data sets depends on
the number and type of hybrids and the accuracy of the pro-
vided pseudo-energies.

First, we simulated the experimental design of Wee et al. [26],
in which energies of interaction between close variants of a single
miRNA (let-7) and their perfectly complementary sequences were
measured. There are 1890 possible two point-mutants of let-7,
from which we sampled datasets of different sizes. An alternative
design is to measure the energies of interaction between ‘random’
small RNAs and their partially complementary sequences. In this
approach the small RNA is an entirely ‘random’ sequence whereas
the interacting site is a sequence whose complementarity to the
small RNA varies. To construct it, we first chose the average num-
ber of complementary nucleotides. With probabilities of comple-
mentarity chosen uniformly between 0.25 and 1, we can
simulate from interactions of random RNA fragments to interac-
tions of perfectly complementary sequences. This second approach
is meant to provide datasets containing more information in terms
of pairs of interacting nucleotides than the first approach. For both
methods, while constructing subsets of various sizes, we aimed to
cover uniformly the space of interaction energies and of nucleotide
positions involved in the binding. Finally, we considered the
possibilities that the measurements are not entirely accurate. To
simulate this, we added gaussian noise to the computed interac-
tion energy for each hybrid with a standard deviation of 0 (no
noise), 1%, 5% and 10% of the predicted energy of interaction. For
each data set size and each noise level we generated 100 synthetic
data sets. To each synthetic data set we applied the simulated
annealing procedure that was described in Khorshid et al. [19] to
recover the parameters of the MIRZA model used to generate the
pseudo-energies. The results, averaged over the 100 replicates of
each setting, are shown in Fig. 10. They indicate that if the mea-
surement noise is less than 10%, �250 hybrids, chosen from across
the entire range of expected affinities would be sufficient to
recover the model parameters with reasonable accuracy (root
mean square difference, RMSD, between recovered and input
parameters < 1). If the measurements were very precise (relative
error of a few percent), the number of hybrids necessary to recover
a model with RMSD < 1 is considerable smaller, �100, which is
within reach with the technology available today. The experimen-
tal design of measuring closely related variants of a single miRNA
does not yield equally accurate parameter values from a com-
parable number of hybrids, presumably due to the limited sam-
pling of nucleotide/position combinations.
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4. Discussion and perspective

That miRNAs are important for the proper development and
function in a large number of species is undisputed. Similar to tran-
scription regulation by transcription factors, miRNA-dependent
regulation is ‘combinatorial’. That is, a regulator typically has many
targets and a target is affected by many regulators. In contrast to
transcription factors, miRNAs induce milder changes in target
expression, which makes it more difficult to distinguish bona fide
regulatory effects from biological or experimental variability.
Consequently, a number of distinct directions are pursued in the
field. Many groups have started to explore functional conse-
quences of miRNA–target interaction that go beyond the repres-
sion of a single miRNA target into dynamical aspects of the
response of a larger network, containing multiple miRNAs and
multiple targets [9–11,39,40]. Such a network is quite complex
and can exhibit very rich behaviors. For example, a recent study
emphasized that even an increased expression of some miRNA tar-
gets can be expected in response to the increased expression of a
miRNA. This could happen if miRNAs with different efficiencies
in target down-regulation compete for the same sites on the target,
because over-expression of the miRNA that is less effective in
repressing the target could lead to the displacement of the
miRNA that is more effective and thus to a net increase in target
expression [41]. Additional experiments are necessary to deter-
mine whether this behavior occurs in vivo.

More generally, given the wide range of behaviors that com-
putational models can predict, it is important to sufficiently con-
strain them with accurate parameters. Indeed, as described in
previous sections, recent studies have started to provide measure-
ments of the concentrations and the rate of interactions between
the relevant molecular players. Our work shares this aim. Up to
this point we used high-throughput data sets of miRNA binding
sites that were derived with various approaches to parameterize
a model of miRNA–target interaction. This model allows us to com-
pute the energy of interaction between miRNAs and arbitrary tar-
get sites and to carry out genome-wide predictions of miRNA
targets. We have shown that the model inferred from sequenced
Argonaute/miRNA binding sites predicts quite accurately hybrid
energies that are measured with biochemical methods in vitro.
Furthermore, we have proposed a strategy for deriving a MIRZA-
like model from biochemical measurements that can be obtained
with the technology available today.

Although on its own, the energy of miRNA–target interaction is
not sufficiently predictive of functional interactions, it is one of
several informative features that together enable fairly accurate
transcriptome-wide predictions. These additional features reflect
the secondary structure of the target mRNA, its interactions with
RNA-binding proteins, as well as other factors that are yet not
understood but can be captured in the degree of evolutionary con-
servation of the putative miRNA binding site. Dynamical changes
in the miRNA targetome between cell types or cell states will
remain difficult to model computationally, but they may be impor-
tant for the interpretability of experimental data. For example, it
has been shown that taking into account tissue/condition-specific
isoform expression can improve the prediction of miRNA
targets [42], because alternative polyadenylation can change the
susceptibility of transcripts to miRNA regulation. Conversely,
miRNA stability is also subject to regulation, e.g. by addition of
nucleotides (especially of uridine and adenine) at the 30 end [43].
Argonaute protein modifications, mainly phosphorylation, provide
another layer of regulation, relieving target repression or changing
the subcellular localization [44]. Nevertheless, the approach that
we presented here provides the basis on which more complex, con-
text-specific and even dynamical models describing the impact of
miRNA regulation on cellular function can be developed.
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