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ABSTRACT 25 

Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying 26 

molecular mechanisms are still poorly understood. Here we use a combination of 27 

experimental and computational approaches to unravel the complex transcriptional network 28 

of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ 29 

coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. By integrating 30 

data on genome-wide binding of PGC-1α and gene expression upon PGC-1α over-expression 31 

with comprehensive computational prediction of transcription factor binding sites (TFBSs), 32 

we uncover a hitherto underestimated number of transcription factor partners involved in 33 

mediating PGC-1α action. In particular, principal component analysis of TFBSs at PGC-1α 34 

binding regions predicts that, besides the well-known role of the estrogen-related receptor α 35 

(ERRα), the activator protein-1 complex (AP-1) plays a major role in regulating the PGC-1α-36 

controlled gene program of hypoxia response. Our findings thus reveal the complex 37 

transcriptional network of muscle cell plasticity controlled by PGC-1α. 38 

  39 
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INTRODUCTION 40 

A sedentary life style can lead to an imbalance between energy intake and expenditure and 41 

favors the development of a number of chronic diseases like obesity and type 2 diabetes. 42 

Regular exercise on the other hand is an effective way to reduce the risk for these lifestyle-43 

related pathologies (1). The health benefits of exercise are at least in part induced by 44 

changes in skeletal muscle tissue. Muscle cells exhibit a high plasticity and thus a remarkably 45 

complex adaptation to increased contractile activity. For example, endurance training 46 

induces mitochondrial biogenesis, increases capillary density and improves insulin sensitivity 47 

(1, 2). To achieve such a complex plastic response, a number of different signaling pathways 48 

are activated in an exercising muscle, for example p38 MAPK-mediated protein 49 

phosphorylation events, increased intracellular calcium levels or the activation of the 50 

metabolic sensors AMP-dependent protein kinase (AMPK) and sirtuin-1 (SIRT1) (3). While 51 

the temporal coordination of the numerous inputs is not clear, all of the major signaling 52 

pathways converge on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-53 

1α) to either induce Ppargc1a gene expression, promote post-translational modifications of 54 

the PGC-1α protein, or by doing both (4, 5). Upon activation, PGC-1α mediates the muscular 55 

adaptations to endurance exercise by coactivating various transcription factors (TFs) 56 

involved in the regulation of diverse biological programs such as mitochondrial biogenesis, 57 

angiogenesis, ROS detoxification or glucose uptake (3). Accordingly, transgenic expression of 58 

PGC-1α in mouse skeletal muscle at physiological levels not only induces mitochondrial 59 

biogenesis but also drives a fiber type conversion towards a more oxidative, slow-twitch 60 

phenotype (6) while muscle-specific Ppargc1a knockout animals exhibit several symptoms of 61 

pathological inactivity (7, 8). 62 

Coregulators are part of multicomponent regulatory protein complexes that are well suited 63 

to translate external stimuli into changes in promoter and enhancer activities by combining 64 

various enzymatic activities to modulate histones and chromatin structure, and recruit other 65 

TFs (9). Thus, dynamic assembly of distinct coregulator complexes enables the integration of 66 

many different signaling pathways leading to a coordinated and specific regulation of entire 67 

biological programs by multiple TFs (10, 11). For example, PGC-1α not only recruits histone 68 

acetylases (12), the TRAP/DRIP/Mediator (13) as well as the SWI/SNF protein complexes 69 

(14), but also binds to and coactivates a myriad of different transcription factors, even 70 
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though a systematic inventory of TF binding partners has not been compiled yet (15). Thus, 71 

the specific control exerted by the PGC-1α-dependent transcriptional network might provide 72 

an explanation for the dynamic and coordinated muscle adaptation to exercise. Since PGC-73 

1α in skeletal muscle not only confers a trained phenotype, but also ameliorates several 74 

different muscle diseases (16), the unraveling of the PGC-1α-controlled transcriptional 75 

network in skeletal muscle would be of great interest to identify putative therapeutic targets 76 

within this pathway. 77 

Therefore, we aimed at obtaining a global picture of the co-regulatory activity of PGC-1α in 78 

skeletal muscle cells. More precisely, by combining data on the genome-wide binding 79 

locations of PGC-1α and the gene expression profiles in response to PGC-1α over-expression 80 

with comprehensive computational prediction of transcription factor binding site (TFBS) 81 

occurrence, we sought to unveil the biological processes that are regulated by PGC-1α, to 82 

identify the transcription factors that partner with PGC-1α, and to determine the 83 

mechanistic details of PGC-1α-regulated transcription. We not only mapped the locations on 84 

the DNA where PGC-1α was bound, but also delineated the target genes whose expression is 85 

either directly or indirectly affected by PGC-1α and identified novel putative transcription 86 

factor partners that mediated PGC-1α’s action. In particular, our results strongly suggest that 87 

the activator protein-1 (AP-1) complex is a major regulatory partner of PGC-1α, with AP-1 88 

and PGC-1α together regulating the hypoxic response gene program in muscle cells in vitro 89 

and in vivo. 90 

91 
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MATERIALS AND METHODS 92 

Cell culture and siRNA transfection 93 

C2C12 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 94 

10% fetal bovine serum (FBS), 100 Units/ml penicillin and 100ug/ml streptomycin. To obtain 95 

myotubes, the C2C12 myoblasts were allowed to reach 90% confluence and the medium was 96 

changed to DMEM supplemented with 2% horse serum (differentiation medium) for 72 97 

hours. 98 

The siRNAs for the knockdown of NFE2L2, FOS, JUN, ATF3, NFYC, ZFP143, GTF2I, the non-99 

targeting siRNA pool and the DharmaFECT1 transfection reagent were purchased from 100 

Dharmacon (Fisher Scientific) and the siRNA transfection was performed according to the 101 

Thermo Scientific DharmaFECT Transfection Reagents siRNA Transfection Protocol. Briefly, 102 

after three days of differentiation, the respective siRNAs (50nM final concentration) was 103 

added to the medium. 24h after siRNA transfection, the cells were infected with either the 104 

PGC-1α or GFP adenovirus. Then, 48h after adenoviral infection, the cells were harvested. 105 

Differentiated C2C12 cells were infected with adenoviral (AV) shERRα (kindly provided by Dr. 106 

Anastasia Kralli, Scripps Research Institute, La Jolla, CA, USA) to knockdown and inactivate 107 

ERRα or shGFP as a control. The infected cells were kept in culture for 4 days. Afterwards, 108 

cells were infected with the AV-flag-PGC-1α or AV-GFP and kept in culture two additional 109 

days. As a supplement to the previously infected AV shERRα cells, 2µM of the ERRα inverse 110 

agonist XCT-790 were added. To the remaining cells, 0.02% DMSO as a vehicle were added 111 

to the differentiated medium. All the experiments have been performed in biological 112 

triplicates. For RNA isolation, TRIzol® was used according to the TRIzol® reagent RNA isolation 113 

protocol (Invitrogen). Three conditions were used for further analysis: AV-shGFP + AV-GFP + 114 

vehicle, AV-shGFP + AV–flag-PGC-1α + vehicle, AV-shERRα + AV-flag-PGC-1α + 2µM XCT-790. 115 

 116 

ChIP and ChIP Sequencing 117 

ChIP was performed according to the Agilent Mammalian ChIP-on-chip Protocol version 118 

10.0. For each immunoprecipitation, approximately 1x108 C2C12 cells were differentiated 119 

into myotubes and infected with AV-flag-PGC-1α. For cross-linking protein complexes to DNA 120 
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binding elements, the cells were incubated in a 1% formaldehyde solution for 10 minutes, 121 

followed by the addition of glycine to a final concentration of 125mM to quench the effect of 122 

the formaldehyde. The cells were rinsed in 1xPBS, harvested in ice-cold 1xPBS using a 123 

silicone scraper and pelleted by centrifugation. The pelleted cells were either used 124 

immediately or flash frozen and stored for later. The cells were then lysed at 4°C using two 125 

lysis buffers containing 0.5% NP-40/0.25% Triton X-100 and 0.1% Na-deoxycholate/0.5% N-126 

lauroylsarcosine, respectively. The chromatin was then sheared by sonication to obtain DNA 127 

fragments of about 100-600bp in length. 50μl of the sonicated lysate was saved as input 128 

DNA. The immunoprecipitation was performed overnight at 4°C using magnetic beads 129 

(Dynabeads® Protein G, Invitrogen), which were previously coated with monoclonal 130 

antibodies like the monoclonal ANTI-FLAG® M2 Antibody, Sigma for the ChIP of PGC-1α or 131 

with the monoclonal anti-c-Fos (9F6) rabbit antibody #2250, Cell Signaling for the ChIP of 132 

FOS. The beads carrying the precipitate were washed five times for the c-Fos antibody and 133 

six times for the flag antibody with RIPA buffer and once with TE that contained 50mM NaCl 134 

to eliminate unspecific binding of DNA to the beads. For elution, the beads were 135 

resuspended in elution buffer containing 1% SDS, placed in 65°C water bath for 15 minutes 136 

and vortexed every 2 minutes. To reverse the cross-links, the samples were incubated at 137 

65°C overnight. The following day, the RNA and the cellular proteins were digested using 138 

RNase A and proteinase K. The DNA was precipitated and the success of the chromatin 139 

immunoprecipitation was validated by semiquantitative real-time PCR. The ChIP 140 

experiments were performed in triplicates. The ChIP of PGC-1α was further used for 141 

sequencing.  The ChIP-Seq experiment of over-expressed PGC-1α in C2C12 cells was 142 

performed in biological duplicates. At the joint Quantitative Genomics core facility of the 143 

University of Basel and the Department of Biosystems Science and Engineering (D-BSSE) of 144 

the ETH Zurich in Basel, DNA libraries were prepared using the standard Illumina ChIP-Seq 145 

protocol, as described by the manufacturer, and the immunoprecipitated samples 146 

sequenced on the Genome Analyzer II. In order to keep only high quality data, the 147 

sequenced reads were filtered based on the quality score of each read and its alignments. 148 

Read were retained when Phred score >= 20, read length >= 25 bps and number of wrongly 149 

called nucleotides (Ns) <= 2. Those reads that passed the filter, (6’711’717 for the first 150 

immunoprecipitated sample (IP), 36’580’431 for the second IP, 17’899’074 for the first 151 

Whole Cell Extract (WCE), and 35’525’221 for the second WCE), were aligned to the mouse 152 
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genome, UCSC mm9 assembly, using Bowtie version 0.12.7 (17) using parameters --best --153 

strata -a --m 100. The number of aligned reads equaled 5’699’648 for the first IP sample, 154 

16’053’370 for the first WCE, 21’448’059 for the second IP, and 32’244’584 for the second 155 

WCE. 156 

 157 

Identification of bound regions 158 

To identify regions that were significantly enriched in the ChIP, we passed a 200 bps long 159 

sliding window along the genome, sliding by 25 bps between consecutive windows, and 160 

estimated the fraction of all ChIP reads fIP that fall within the window, as well as the fraction 161 

fWCE of reads from the whole cell extract that fall in the same window (which we estimate 162 

from a 2000 bps long window centered on the same genomic location). A Z-score quantifying 163 

the enrichment in the ChIP of each window was computed as: 164 

ܼ ൌ ூ݂௉ െ  ௐ݂஼ாඥߪଶூ௉ ൅  ଶௐ஼ாߪ 

where ߪଶூ௉ and ߪଶௐ஼ா are the variances of the IP and WCE read frequencies, which are given 165 

by: 166 

ଶூ௉ߪ ൌ  ௙಺ುכ ሺଵି ௙಺ುሻே಺ು  and ߪଶௐ஼ா ൌ  ௙ೈ಴ಶ כ ሺଵ ି ௙ೈ಴ಶሻேೈ಴ಶ  167 

respectively. 168 

The enrichments were reproducible across biological replicates. Using only the first 169 

sequencing dataset, we called peaks at a Z cutoff of 4.5; we then compared these with the Z 170 

scores from the corresponding regions of the second dataset and the Pearson correlation 171 

coefficient was found to be 0.778. Similarly, we called peaks at a Z cutoff of 4.5 using only 172 

the second sequencing dataset; when we compared these peaks with the Z scores of the 173 

corresponding regions from the first dataset, the Pearson correlation coefficient was found 174 

to be 0.782. 175 

To obtain a final set of binding peaks, we combined the reads from the two biological 176 

replicates computing the Z score of each window was computed as:  177 
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ܼ ൌ  ௙಺ುభା ௙಺ುమି ௙ೈ಴ಶభି ௙ೈ಴ಶమඥఙమ಺ುభା ఙమ಺ುమା ఙమೈ಴ಶభା ఙమೈ಴ಶమ. 178 

We conservatively considered all windows with a Z-score larger than 4.5 as were considered 179 

significantly enriched (False Discovery Rate 0.6%). The final binding peaks were obtained by 180 

merging consecutive windows that all passed the cut-off and by considering the “peak” to 181 

correspond to the top scoring window, i.e. corresponding to the summit of the ChIP-Seq 182 

signal. To determine the PGC-1α distribution genome-wide, peaks were annotated according 183 

in relation to their closest Mus musculus RefSeq transcripts. We defined peaks as: “Intronic” 184 

(peak center lying inside an intron); “Exonic” (peak center lying inside an exon); “Upstream 185 

of TSS” (peak center lying within -10 to 0 kb from the closest TSS); “Downstream of TES” 186 

(peak center lying within 0 to 10 kb from the closest TES); “Intergenic” (peak center located 187 

farer than 10 kb from the nearest transcript). Moreover, we computed the ratio between 188 

observed and expected peak location distributions, obtained by generating 100 peak sets 189 

composed of 7512 random peaks each. 190 

 191 

Motif finding and TFBSs over-representation 192 

The binding peak regions were aligned to orthologous regions from other 6 mammalian 193 

species – human (hg18), rhesus macaque (rheMac2), dog (canFam2), horse (equCab1), cow 194 

(bosTau3) and opossum (monDom4) – using T-Coffee (18). A collection of 190 mammalian 195 

regulatory motifs (position weight matrices or WMs) representing the binding specificities of 196 

approximate 350 mouse TFs (in many cases, sequence specificities of multiple closely-related 197 

TFs were represented with the same WM) were downloaded from the SwissRegulon website 198 

(19). TFBSs for all known motifs were predicted using the MotEvo algorithm (20) on the 199 

alignments of all the 7512 peak sequences. Only binding sites with a posterior probability >= 200 

0.1 were considered for the further steps of the analysis. In order to create a background set 201 

of regions to assess the overrepresentation of binding sites within our regions, we created 202 

randomized alignments by shuffling the multiple alignment columns, maintaining both the 203 

gap patterns and the conservation patterns of the original alignments. TFBSs were predicted 204 

on the shuffled alignments using the same MotEvo settings as for the original peak 205 

alignments. Over-representation of motifs in the PGC-1α binding peaks was calculated by 206 

comparing total predicted TFBS occurrence within binding peaks with the predicted TFBS 207 
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occurrence in the shuffled alignments. We evaluated the enrichment of TFBSs for each motif 208 

x by collecting the sum ݊௫ of the posterior probabilities of its predicted sites in the peak 209 

alignments as well as the corresponding sum ݊Ԣ௫ in the shuffled alignments, and computed a 210 

Z-score: 211 

ܼ ൌ  ௫݂ െ  ݂Ԣ௫ඨ ௫݂ כ ሺ1 െ ௫݂ሻܮ௫ ൅ ݂Ԣ௫ כ ሺ1 െ  ݂Ԣ௫ሻܮԢ௫
 

where ܮ௫ and ܮԢ௫ are the total lengths of the original and shuffled alignments, respectively, 212 

while ௫݂ and ݂Ԣ௫ are given by the equations: 213 

݊௫ כ  ݈௫ ൌ  ௫݂ כ ௫  and ݊Ԣ௫ܮ  כ  ݈௫ ൌ  ݂Ԣ௫ כ  Ԣ௫ 214ܮ 

with ݈௫ the length of motif x. 215 

 216 

Principal Component Analysis of TFBS occurrence in binding peaks 217 

The input matrix N for the Principal Component Analysis (PCA) contained the total number 218 

of predicted binding sites Npm in each of the 7512 binding peaks p (rows) for each of the 190 219 

mammalian regulatory motifs m (columns). After mean centering the columns of this matrix, 220 ෩ܰ௣௠ ൌ ௣ܰ௠ െ  i.e. subtracting the average site count for each motif, Singular Value 221 ,ۄ௠ܰۃ

Decomposition (SVD) was used to factorize this matrix: ෩ܰ ൌ ܷ · ܵ ·  ்ܸ, where ܷ is a ܲ ൈ  222 ܯ

matrix whose columns are the left singular vectors of ෩ܰ ; ܵ is a ܯ ൈ  diagonal matrix 223 ܯ

containing the singular values, and ்ܸ (the transpose of ܸ) is an ܯ ൈ  matrix whose rows 224 ܯ

are the right singular vectors, with P the number of peaks, and M the number of motifs. The 225 

SVD was performed using the “svd” package of the “R” programming language. 226 

 227 

Gene expression arrays 228 

Whole-gene expression after 48 hours of transfection with adenovirus was measured in 229 

C2C12 cells with Affymetrix GeneChip® Mouse Gene 1.0 ST microarrays at the Life Science 230 

Training core facility of the University of Basel. Raw probe intensities were corrected for 231 

background and unspecific binding using the Bioconductor package “affy” (21). 232 
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Subsequently, probes were classified as expressed or non-expressed by using the “Mclust” R 233 

package (22) and, after removal of non-expressed probes, the intensity values were quantile 234 

normalized across all samples. Using mapping of the probes to the UCSC collection of mouse 235 

mRNAs, probes were then associated to a comprehensive collection of mouse promoters 236 

available from the SwissRegulon database (19). The log2 expression level of a given 237 

promoter was calculated as the weighted average of the expression levels of all probes 238 

associated to it. Log2 expression levels were then compared between over-expressed PGC-239 

1α and the control GFP sample; for each promoter, the change in expression level across the 240 

two conditions was measured by log2 fold change (log2FC), computed as the difference 241 

between the mean of the log2 values in PGC-1α and the mean of the log2 values in GFP. The 242 

significance of the expression change was assessed by a Z score, which was computed as: 243 

ܼ ൌ ത௉ீ஼ଵఈܧ  െ ଶ௉ீ஼ଵఈ݊ߪതீி௉ටܧ  ൅ ଶீி௉݊ߪ   

where ݊ ൌ 3 was the number of replicate samples, ܧത௉ீ஼ଵఈ is the mean log2 expression across 244 

the PGC-1α samples, ܧതீி௉ is the mean log2 expression across the GFP samples, and ߪଶ௉ீ஼ଵఈ 245 

and ߪଶீி௉ are the variances of log2 expression levels across the replicates for the PGC-1α 246 

and control samples, respectively. Promoters were considered significantly up-regulated 247 

when log2FC >= 1 and Z >= 3, and significantly down-regulated when log2FC <= -1 and Z <= -248 

3. 249 

Peaks were assigned to promoters by proximity. To assign each peak to a promoter, we 250 

calculated the distance from the center of the peak to the center of neighboring promoters; 251 

whenever the peak was closer than 10 kb from at least one promoter, it was assigned to the 252 

nearest promoter and, thus, to its associated gene. 253 

 254 

Gene Ontology enrichment analysis 255 

Gene IDs were extracted from differentially regulated promoters and divided in four groups: 256 

up-regulated promoters with an assigned binding peak, up-regulated promoters without an 257 

assigned binding peak, down-regulated promoters with an assigned peak, and down-258 

regulated promoters without an assigned peak. These four gene sets were used as input for 259 
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the functional analysis tool FatiGO (23) to identify significantly over-represented Gene 260 

Ontology (GO) categories compared to all Mus musculus genes. Only GO terms having an 261 

FDR-adjusted p-value <= 0.05 were considered significant. 262 

 263 

Motif activity at direct and indirect targets of PGC-1α 264 

To integrate the information from the PGC-1α binding peaks, we extended MARA (24) to 265 

model the direct and indirect regulatory effects of PGC-1α. Given the input expression data 266 

and the computationally predicted binding sites, MARA infers, for each of 190 regulatory 267 

motifs m, the activity Ams of the motif in each sample s when the motif occurs outside of a 268 

region of PGC-1α, and the activities A*
ms of the motifs when they occur within a PGC-1α 269 

binding peak. That is, changes in the motif activities Ams upon over-expression of PGC-1α 270 

indicate indirect regulatory effects of PGC-1α on each motif m, whereas changes in the motif 271 

activities A*
ms reflect direct regulatory effects of PGC-1α as mediated by each motif m. For 272 

each promoter p that was not associated with any PGC-1α binding peak (which we denote 273 

indirect targets), we modeled its log-expression in sample s, eps, in terms of the predicted 274 

number of TFBSs Npm that occur in the proximal promoter region (running from -500 to +500 275 

relative to TSS) for each regulatory motif m. That is, MARA assumes the linear model: 276 

݁௣௦ ൌ ܿ௣ ൅ ܿ̃௦ ൅ ෍ ௣ܰ௠ܣ௠௦௠  

where cp is the basal expression of promoter p, ܿ̃௦ is a sample-dependent normalization 277 

constant, and ܣ௠௦ is the regulatory activity of motif m in sample s, which is inferred by the 278 

model. Formally, ܣ௠௦ quantifies amount by which the expression of promoter p in sample s 279 

would be reduced if a binding site for motif m were to be deleted from the promoter.  280 

For each “direct target” promoter p that has an associated PGC-1α binding peak, which we 281 

defined as promoters with a peak within 1 kb or with a peak within 100 kb that was highly 282 

conserved according to PhastCons score of the region (25), we model its expression in terms 283 

of the predicted TFBSs in the binding peak, i.e.: 284 

݁௣௦ ൌ ܿ௣ ൅ ܿ̃௦ ൅ ෍ ௣ܰ௠כ ௠כ௠௦ܣ  



12 

where ௣ܰ௠כ  is the number of predicted TFBSs for motif m in the peak associated with 285 

promoter p, and ܣ௠௦כ  is the motif activity of regulator m in sample s when this motif occurs in 286 

the context of PGC-1α binding. That is, the inferred motif activities ܣ௠௦ quantify the 287 

activities of regulatory motifs when they occur independent of PGC-1α binding, and the 288 

motif activities ܣ௠௦כ  quantify the activities of motifs when they occur in a PGC-1α binding 289 

peak, i.e. the latter activities reflect direct effects of a PGC-1α while the former reflect 290 

indirect effects.  291 

MARA predicts activities for 190 different mammalian regulatory motifs, associated with 292 

roughly 350 mouse TFs. Besides motif activities MARA also calculates error-bars ߜ௠௦ for each 293 

motif m in each sample s. Using these, MARA calculates, for each motif m, an overall 294 

significance measure for the variation in motif activities across the samples analogous to a z-295 

statistic: 296 

௠ݖ ൌ ඩ1ܵ ෍ ൬ܣ௠௦ߜ௠௦ ൰ଶௌ
௦ୀଵ  

For each motif we calculate both a z-score ݖ௠ associated with its indirect activity changes, 297 

and a z-score ݖ௠כ  associated with its direct activity changes. MARA also ranks the confidence 298 

on predicted target promoters of each motif by a Bayesian procedure that quantifies the 299 

contribution of that factor to explaining the promoter’s expression variation by a Chi-300 

squared value (for details, see (24)). The parameters used for motif stratification were: (i) 301 

the Z score ݖ௠כ  for direct activity changes, (ii) the Z score ݖ௠ for indirect motif activity 302 

changes, (iii) the Z score ݖҧ௠כ  for direct motif activity changes, computed by averaging the 303 

sample replicates and (iv) the Z score ݖҧ௠ for indirect motif activity changes, computed by 304 

averaging the sample replicates. The latter two measures were used to show which direction 305 

the motif activity changes when over-expressing PGC-1α with respect to the control 306 

condition. All motifs m for which either the direct or indirect motif activities were changing 307 

significantly (ݖ ൒ 2) were subsequently selected. 308 

 309 

De novo motif finding 310 
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PhyloGibbs (26) was used to identify de novo motifs across the 200 top enriched PGC-1α 311 

peaks. The parameters used were -D 1 -z 1 -y 200 -m 10, corresponding to searching on 312 

multiple alignments for a single motif of length 10 with a total of 200 sites. The resulting 313 

motif was scanned for similarity to the other known motifs from our dataset using STAMP 314 

(27), with settings: Pearson Correlation Coefficient for column comparison metric, Smith-315 

Waterman for the alignment method, penalty of 0.5 and 0.25 for gap opening and gap 316 

extension, respectively. 317 

 318 

Real-time PCR and target gene validation 319 

Putative target genes of distinct transcription factor-PGC-1α combinations were chosen 320 

according to three criteria: first, positive transcriptional regulation by PGC-1α by more than 321 

2 fold, second, presence of a PGC-1α binding peak within a 10 kb distance from the TSS and 322 

third, prediction of targeting by MARA with a positive Chi-squared score. The sequences of 323 

the primers used in real-time PCR experiments are depicted in Suppl. Table 1. Relative mRNA 324 

was quantified by qPCR on a StepOnePlus system (Applied Biosystems) using Power SYBR 325 

Green PCR Master Mix (Applied Biosystems). 326 

The values are presented as the mean +/- SEM. A Student’s t-test was performed and a p-327 

value < 0.05 was considered as significant (*p<0.05, **p<0.01, ***p<0.001). 328 

 329 

Animals 330 

Mice were housed in a conventional facility with a 12-h night/12-h day cycle with free access 331 

to chow diet pellet and water. For the experiments, 22-23 week-old skeletal muscle-specific 332 

HSA-PGC-1α knockout (MKO) male mice and 8 week-old PGC-1α muscle-specific transgenic 333 

(TG) male mice were used as previously described (6-8). All experiments were performed 334 

according to the criteria outlined for the care and use of laboratory animals and with 335 

approval of the veterinary office of the canton Basel and the Swiss authorities. 336 

 337 

Treadmill running 338 
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Treadmill running was performed with the TG mice on the Columbus Instruments motorized 339 

treadmill with an electric shock grid. The mice were acclimatized to the treadmill and then 340 

let run till exhaustion. The running protocol is as follows: 10m/min for 5min with an increase 341 

by 2m/min every 5min until 26m/min and an inclination of 5 degrees. The speed of 26m/min 342 

was kept until exhaustion of the mice (7, 28, 29). Mice were killed and tissues were collected 343 

3h after exercise. 344 

 345 

RNA isolation of muscle tissue 346 

Gastrocnemius and quadriceps were used to isolate RNA by TRIzol® according to the TRIzol® 347 

reagent RNA isolation protocol (Invitrogen). 348 

 349 

  350 
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RESULTS 351 

Broad recruitment of PGC-1α to the mouse genome 352 

PGC-1α-dependent gene transcription has been studied in many different experimental 353 

contexts. In isolation, gene expression arrays however are unable to distinguish direct from 354 

indirect targets, or to reveal the genomic sites where PGC-1α is recruited to enhancer and 355 

promoter elements, i.e. by coactivating TFs that directly bind to the DNA. Thus, we first 356 

performed chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) of PGC-357 

1α in differentiated C2C12 mouse myotubes to identify the locations where PGC-1α is bound 358 

to the genome. To identify genomic regions that are significantly enriched in the ChIP, we 359 

slid a 200 bp window across the genome comparing the local ChIP read density with the read 360 

density from a background whole cell extract sample. We selected all regions with a Z-361 

statistic larger than 4.5 as significantly enriched (FDR 0.6%, Suppl. Fig. S1A). Using this 362 

stringent cutoff, we identified 7512 binding regions for PGC-1α via interaction with a TF 363 

genome-wide, which include binding regions in the promoters of known PGC-1α target 364 

genes (Fig. 1A) such as medium-chain specific acyl-CoA dehydrogenase (Acadm) and 365 

cytochrome c (Cycs) (30, 31). The enrichment of immunoprecipitated DNA fragments from 366 

the ChIP-Seq was validated for these and other PGC-1α target genes by semiquantitative 367 

real-time PCR (Fig. 1B). In absolute terms, the distribution of the ChIP-Seq peaks revealed 368 

that PGC-1α is mostly recruited at distal sites from the assigned targets and, to a lesser 369 

extent, to proximal regions of the gene or within an intronic sequence (Fig. 1C). However, 370 

when compared to randomly selected DNA regions of equal size and number, PGC-1α 371 

binding peaks occur twice as often within 10 kb upstream of the transcription start site (TSS). 372 

In parallel to the ChIP-Seq experiment, we furthermore analyzed gene expression patterns in 373 

differentiated muscle cells both in control condition and under PGC-1α over-expression. 374 

Using a reference set of mouse promoters (19) and associating microarray probes to 375 

promoters by mapping to known transcripts, we found 1566 promoters (corresponding to 376 

984 genes) to be significantly up-regulated (log2 fold change >= 1; Z score >= 3) and 1165 377 

promoters (corresponding to 727 genes) to be significantly down-regulated (log2 fold change 378 

<= -1; Z score <= -3). Thus, similar to previous reports, PGC-1α induced and repressed the 379 

transcription of almost the same number of genes, respectively, indicating that the 380 
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physiological function of PGC-1α includes both the activation and inhibition of substantial 381 

numbers of genes. 382 

To combine the DNA binding results from the ChIP-Seq with the data of the gene expression 383 

arrays, we then assigned ChIP-Seq peaks to the closest promoter (and the associated gene) 384 

within a maximum distance of 10 kb. In this way, about 30% of all peaks (2295 of 7512) could 385 

be associated with a target promoter. Inversely, for about 35% of all significantly up-386 

regulated genes (341 of 984), a PGC-1α binding peak is found within 10 kb of the promoter. 387 

Since some of the up-regulated promoters may be regulated by more distal peaks, this is 388 

only a lower bound on the fraction of genes that are directly regulated. In stark contrast, 389 

only about 5% of all repressed genes harbor one or more PGC-1α DNA recruitment peaks in 390 

their vicinity (36 of 727) opposed to 95% indirectly down-regulated PGC-1α target genes 391 

(691 genes) (Fig. 1D). Moreover, the distribution of the distances between PGC-1α peaks and 392 

their associated promoters revealed a tight cluster of 532 peaks close to promoter regions 393 

for up-regulated, direct PGC-1α target genes (Fig. 1E) whereas the distribution of the 43 394 

peaks associated to down-regulated genes was much wider, raising the possibility that the 395 

association of peaks to transcriptionally repressed genes might be spurious (Fig. 1F). In 396 

summary, the strong enrichment of binding peaks near up-regulated genes and the almost 397 

complete absence of binding peaks near down-regulated genes suggest that direct 398 

regulation of transcription by PGC-1α is almost exclusively activating. We note that there is a 399 

large fraction of binding peaks (75%) that are associated to target genes that do not 400 

significantly alter their expression. These peaks may have been wrongly assigned, their 401 

functionality may be dependent on additional factors not active in these cells, or they may 402 

simply be spurious binding events that are not functional.  403 

We next used this stratification of peaks and genes to study whether direct (i.e. with an 404 

associated binding peak) and indirect PGC-1α target genes exert different biological function 405 

and identified Gene Ontology (GO) terms that were over-represented in any of the four 406 

categories. First, we observed that the most significantly enriched functional categories for 407 

directly and indirectly up-regulated genes were those related to mitochondria, oxidative 408 

phosphorylation and energy production (Fig. 1G and Suppl. Fig. S1B). In contrast, GO analysis 409 

of indirectly down-regulated PGC-1α target genes revealed a high prevalence of terms 410 

related to inflammation and immune response (Fig. 1H and Suppl. Fig. S1C). Assuming that 411 
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the assignment of peaks to repressed genes is not spurious, the few directly repressed PGC-412 

1α targets exhibit an enrichment in functions related to muscle contraction, in particular for 413 

genes that are linked to contractile and metabolic properties of glycolytic, fast-twitch muscle 414 

fibers (Fig. 1H and Suppl. Fig. S1D), as would be expected from the observed shift from 415 

glycolytic to oxidative fibers mediated by PGC-1α in muscle (6). 416 

 417 

Modeling the direct and indirect gene regulatory effects of PGC-1α  418 

As a next step, we rigorously modeled the effects of PGC-1α on its target genes in terms of 419 

the occurrence of TFBSs for a large collection of mammalian regulatory motifs. We 420 

previously introduced a general framework, called Motif Activity Response Analysis (MARA) 421 

(24), for modeling the gene expression profiles as a linear function of the TFBSs occurring in 422 

the promoters and unknown regulatory “activities” of each of the regulators. As detailed in 423 

the Methods, we here extended MARA to incorporate information from the PGC-1α ChIP-424 

Seq data, with the aim of identifying which other TFs are involved in mediating both the 425 

direct and indirect regulatory effects of PGC-1α. Specifically, for all “direct target” promoters 426 

that were associated with a PGC-1α binding peak, we modeled the expression of the 427 

promoter in terms of the predicted TFBSs in the neighborhood of the binding peak, while for 428 

“indirect target” promoters we modeled the promoter’s expression in terms of the predicted 429 

TFBSs in the proximal promoter region, according to the conventional MARA approach (Fig. 430 

2A and 2B). 431 

First, further supporting our analysis above, direct target promoters were almost exclusively 432 

up-regulated and only in a few exceptional cases reached statistical significance for PGC-1α-433 

repressed transcripts (Fig. 2C). Among the direct motif activities, the ESRRA position weight 434 

matrix was the top ranking motif with a Z score of 6.04 (Suppl. Fig. 2). The corresponding TF 435 

estrogen-related receptor α (ERRα), an orphan nuclear receptor, has been extensively 436 

studied as a central binding partner for PGC-1α in the regulation of mitochondrial gene 437 

expression (30-32). To stratify the different motifs according to their predicted function, we 438 

then divided all motifs into groups according to the behavior of both their direct and indirect 439 

activity changes. Strikingly, all motifs exhibited one of only four different motif activity 440 

patterns. First, 6 TFs (Suppl. Fig. S2) were predicted to positively regulate PGC-1α target 441 

genes only in the presence of PGC-1α (Fig. 2D). Second, we found 6 motifs (Suppl. Fig. S2) 442 
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with significantly up-regulated direct and indirect motif activities upon PGC-1α over-443 

expression (Fig. 2E). To our surprise, ERRα was predicted to regulate PGC-1α target genes in 444 

this manner, even though in previous reports gene regulation by ERRα in the context of 445 

activated PGC-1α was suggested to be dependent on PGC-1α coactivation (30-32). Third, we 446 

found 13 motifs (Suppl. Fig. S2) that were predicted to regulate PGC-1α target genes, 447 

however only in the absence of PGC-1α (Fig. 2F). Fourth, there was a group of 28 motifs 448 

(Suppl. Fig. S2) that showed a significant decrease of indirect motif activity upon PGC-1α 449 

over-expression, but no significant change of their direct motif activity, including NFκB (Fig. 450 

2G), a central regulator of inflammation which is indirectly repressed by PGC-1α (33). 451 

Intriguingly however, no motif was found that showed significant direct repression of target 452 

genes, reinforcing the hypothesis that PGC-1α-dependent gene repression is an indirect 453 

event. 454 

 455 

Nuclear receptors and activator protein-1-like leucine zipper proteins are the main 456 

functional partners of PGC-1α in muscle cells 457 

As a next step, we analyzed the occurrence of TF DNA-binding motifs in the PGC-1α peaks 458 

identified by ChIP-Seq. We first performed de novo motif prediction on the top 200 peaks, 459 

using PhyloGibbs (26). As shown in Figure 3A, the motif that PhyloGibbs identified matches 460 

significantly (E-value = 7.7834e-10, as calculated by STAMP (27)) the canonical ESRRA motif. 461 

In addition to the de novo prediction, we also used the same collection of 190 mammalian 462 

regulatory motifs used by MARA (19) to check which known TF DNA-binding motifs were 463 

significantly over-represented in the PGC-1α peaks relative to a set of background regions. 464 

Many of the most significantly enriched motifs represent variations of nuclear receptor 465 

binding sequences that are based on the “AGT/GTCA” core hexamer and occur either alone or 466 

in direct, inverted or everted repeats with variable spacing (Fig. 3B). Of these, the most 467 

significantly enriched motif was ESRRA, which is present in ~20% of all peaks. Moreover, 468 

among all genes with at least one associated binding peak within 10Kb, ~28% are associated 469 

with a peak containing a predicted ERRα site. Interestingly, besides the nuclear receptor 470 

motifs, we also found the DNA-binding element of the insulator protein CCCTC-binding 471 

factor (CTCF), and a set of highly similar DNA elements sharing the FOS-JUN-like recognition 472 
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sequence “TGAG/CTCA” bound by the TFs BACH2, FOS, FOSB, FOSL1, JUN, JUNB, JUND, 473 

FOSL2, NFE2, and NFE2L2 among the top 15 motifs enriched in PGC-1α peaks (Fig. 3B). 474 

The identity of the exact nuclear receptor binding partner that is bound at each peak is 475 

difficult to deduce from DNA-binding motifs, since considerable promiscuity exists between 476 

receptors and DNA-binding elements in different configurations of hexameric repeats (34). 477 

Moreover, non-nuclear receptor-like TFs are less well studied in the context of PGC-1α-478 

controlled gene expression. Thus, to identify which regulatory motifs are most over-479 

represented among peaks that do not contain nuclear receptor-like sites, we first manually 480 

grouped all of the motifs with a sequence logo very similar to that of ESRRA. Next, we 481 

discarded all peaks that had one or more predicted TFBSs for any of the motifs in this set. 482 

With the remaining 3856 DNA sequences (51.33% of the peaks), we then again assessed the 483 

over-representation of each of the 190 mammalian regulatory motifs. In this analysis, 484 

"TGAG/CTCA” recognition elements, hence FOS-JUN-like motifs, were the most significantly 485 

enriched among these peaks (Fig. 3C). This result suggests that PGC-1α peaks naturally fall 486 

into two classes: those containing ESRRA-like sites, and those containing sites for FOS-JUN-487 

like motifs. 488 

We then constructed a matrix N, whose elements Npm contain the number of predicted 489 

TFBSs for each motif m in each peak region p. We then performed principal component 490 

analysis (PCA) on this site-count matrix to identify linear combinations of regulatory motifs 491 

that explain most of the variation in site-counts across the PGC-1α peaks. The first two 492 

components (out of 190 in total) clearly proved to be the most relevant ones, accounting for 493 

10% and 9.6 % of the total variation in our dataset, respectively (Fig. 3D). Figure 3E shows 494 

the projection of all motifs on these first two principal components, with the names of the 495 

motifs with the largest projection indicated in the figure. Whereas most motifs have 496 

projections close to zero along the first component, there is one group of motifs with strong 497 

negative projections (ESRRA, NR1H4, NR5A1,2, NR6A1) and one group of motifs with strong 498 

positive projections (BACH2, FOS_FOS(B,L1)_JUN(B,D), FOSL2, NFE2, NFE2L1, NFE2L2). These 499 

two sets of sites correspond precisely to the two classes of motifs identified above, 500 

confirming that the most significant variation in TFBSs across PGC-1α peaks is caused by the 501 

occurrence of either ESRRA-like motifs, or FOS-JUN-like motifs. Most interestingly, these two 502 

clusters of motifs reflect structurally distinct classes of TFs; the negatively scoring 503 
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eigenmotifs are characterized by binding of nuclear receptor-type zinc finger domains, while 504 

the eigenmotifs with a positive score correspond to activator protein-1 (AP-1)-like leucine 505 

zipper domains. 506 

The second principal component corresponds to the strength of the binding signal for these 507 

10 motifs, as confirmed by the robust negative correlation (r=-0.92) between the TFBSs 508 

posterior sum per peak and the peak’s projection along the second principal component (Fig. 509 

3F). 510 

 511 

Validation of top scoring motifs reveals novel functional partners of PGC-1α 512 

Our analysis identified a number of so-far uncharacterized TFs as potentially functional 513 

partners for PGC-1α-controlled gene expression in skeletal muscle cells. In order to 514 

experimentally validate some of these candidates, we sorted all TFs by a number of criteria 515 

including TFBS over-representation in binding peaks, MARA activity upon PGC-1α over-516 

expression, and the expression pattern of the TFs themselves. Table 1 shows the top 15 517 

ranked TFs according to this selection. As expected, the well-known PGC-1α partner ERRα 518 

was identified as the most important factor. For our validation experiments, we chose the 519 

next two motifs (FOS_FOS(B,L1)_JUN(B,D) and ZNF143, which is also known as ZFP143) as 520 

well as three motifs from further down the list of the top 15 motifs (GTF2I, NFE2L2 and 521 

NFYC).  522 

FOS, the most up-regulated TF (log2 fold change = 1.78) among the TFs associated with the 523 

motif FOS_FOS(B,L1)_JUN(B,D), is a basic leucine zipper transcription factor known to 524 

heterodimerize with other leucine zipper proteins in order to form the AP-1 complex (35). 525 

The AP-1 complex furthermore contains JUN as well as ATF proteins. Thus, to dissect the 526 

function of the AP-1 protein complex, we also included JUN and ATF3, the most highly 527 

expressed isoforms of their respective protein families in muscle cells. 528 

For each of these 7 TFs (ATF3, FOS, GTF2I, JUN, NFE2L2, NFYC and ZFP143), we selected a 529 

dozen target genes based on the Chi2 score of the MARA prediction, presence of a PGC-1α 530 

binding peak with at least one predicted binding site for the factor of interest, and at least a 531 

2-fold induction upon over-expression of PGC-1α. As summarized in Fig. 4 and Suppl. Fig. S3, 532 

siRNA-based knockdown of all TFs resulted in a robust reduction of the target mRNAs from -533 
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40% to -75%. With the exception of NFYC and JUN, we found that the large majority of 534 

predicted target genes were down-regulated upon knockdown of the factor, confirming our 535 

predictions (Fig. 4). The most consistent effects were observed for FOS and ZFP143 (all 536 

targets down-regulated), followed by GTF2I (11 out of 12 down-regulated) and NFE2L2 and 537 

ATF3 (10 out of 12 down-regulated). Interestingly, distinct target genes of the AP-1 complex 538 

showed differential responsiveness to knockdown of the three AP-1 complex components 539 

FOS, JUN and ATF3 (Fig. 4B, Fig. 4C and Fig. 4D). Similarly, PGC-1α-mediated induction of a 540 

majority of the predicted target genes for NFE2L2 (Fig. 4E), ZFP143 (Fig. 4F) and GTF2I (Fig. 541 

4G) was reduced upon knockdown of the respective TF when compared to the expression in 542 

cells with overexpressed PGC-1α and a scrambled siRNA control. Surprisingly, only 1 of the 543 

11 predicted target genes for NFYC that have been chosen for validation was significantly 544 

repressed by siRNA-induced reduction of this TF (Fig. 4H), suggesting that other TFs may be 545 

involved in mediating the regulatory effects of the NFYC regulatory motif. 546 

 547 

Functional interaction between PGC-1α and different compositions of the AP-1 protein 548 

complex 549 

Our targeted validation strategy revealed that PGC-1α target genes predicted to be 550 

regulated by the FOS-JUN-like motif react in distinct manners to siRNA-mediated knockdown 551 

of individual components of the AP-1 transcription factor protein complex. For example, 552 

some genes only reacted to reduction of FOS (Fig. 5A), while others were responsive to the 553 

knockdown of two (Fig. 5B) or even all three AP-1 protein partners (Fig. 5C) that we have 554 

tested using the siRNA-based approach. To further dissect the responsiveness of PGC-1α 555 

target genes to different AP-1 protein complexes, we performed global gene expression 556 

arrays upon knockdown of each of the three TF components of the AP-1 complex. Fig. 5D 557 

depicts the number of genes that were induced by PGC-1α and that were, at the same time, 558 

down-regulated by the siRNA knockdown of any of the three AP-1 complex members. 559 

Amongst a total of 477 genes, 89% responded to FOS knockdown, 52% to ATF3 knockdown, 560 

and 31% to JUN knockdown. Moreover, while 37% of all targets responded exclusively to 561 

FOS, the fraction of targets responding exclusively to either JUN or ATF3 was at most 5%. 562 

This analysis shows that, whereas different target genes respond differently to the 563 
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knockdown of distinct AP-1 components, FOS is the dominant factor in determining AP-1 564 

function in these conditions. 565 

As shown in Fig. 3B, 341 genes were associated to a PGC-1α binding peak containing a 566 

predicted site for the FOS-JUN-like motif bound by the AP-1 complex. Of these genes, the 567 

expression of 55 was significantly induced by PGC-1α over-expression in muscle cells. In our 568 

siRNA-based validation experiment, we found that 47 out of these 55 PGC-1α-induced/AP-1 569 

predicted targets were significantly down-regulated by knockdown of the AP-1 complex 570 

components and we called these genes “direct PGC-1α/AP-1 targets”. The remaining 430 571 

genes out of 477 (Fig. 5D) were defined accordingly as “indirect PGC-1α/AP-1 targets” that 572 

lack a PGC-1α peak containing a FOS-JUN-like motif, but still are regulated by PGC-1α and the 573 

AP-1 protein components (Fig. 5E). To reveal whether these gene categories exert distinct 574 

functions, GO and KEGG enrichment analyses were performed. Surprisingly, the 47 direct 575 

PGC-1α/AP-1 target genes showed a distinct and significant over-representation of the terms 576 

“response to hypoxia” (GO ID: 0001666; adjusted p-value: 0.0247542) and “mTOR signaling 577 

pathway” (KEGG ID: mmu04150; adjusted p-value: 0.030674) that were absent in the GO 578 

analysis of the remaining PGC-1α/AP-1 targets (Fig. 5F). Recruitment of FOS to the same 579 

regulatory regions as PGC-1α in the direct AP-1/PGC-1α target genes was subsequently 580 

validated by ChIP (Fig. 5G). These results suggest that AP-1, when interacting with PGC-1α, 581 

drives a synergic effect of response to hypoxia; on the other hand, when AP-1 and PGC-1α 582 

act separately, and furthermore through downstream intermediate TFs, they regulate the 583 

expression of genes involved in mitochondrial organization and energy metabolism. 584 

Intriguingly, several of the predicted AP-1/PGC-1α target genes are also under the control of 585 

PGC-1α working with other transcription factors. For example, the vascular endothelial 586 

growth factor (VEGF) or, based on the gene expression arrays, 8 OXPHOS genes seem 587 

likewise to be under the control of AP-1 as well as ERRα in the context of elevated PGC-1α in 588 

skeletal muscle (31, 36). We therefore assessed the predicted and experimental overlap of 589 

these two transcription factors in the regulation of AP-1/PGC-1α target genes. Interestingly, 590 

when the PCA analysis of the PGC-1α peaks was stratified in terms of eigenpeaks, we 591 

observed two distinct groups of peaks associated with AP-1/PGC-1α target genes (Fig. 5H). 592 

First, some of these genes exclusively harbored peaks with FOS-JUN-like TFBSs, whereas the 593 

second group exhibited either peaks with both FOS-JUN- and ESRRA-like TFBSs, or a 594 
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combination of distinct peaks with either of these sites within 10 kb from their promoters 595 

(Fig. 5H). Next, we validated this prediction by investigating the change in expression of 596 

different AP-1/PGC-1α target genes in the context of reduced ERRα expression and function, 597 

elicited by a combination of shRNA-mediated knockdown and pharmacological treatment of 598 

muscle cells with the ERRα inverse agonist XCT790 (31). In line with the PCA, two distinct 599 

groups of ERRα inhibition-sensitive (Fig. 5I-K) and –insensitive (Fig. 5L-N) AP-1/PGC-1α target 600 

genes were found. 601 

Finally, since all of the experiments were performed in differentiated myotubes in culture, 602 

we assessed whether similar gene expression changes of the direct AP-1/PGC-1α targets 603 

involved in hypoxic gene regulation are also observed in skeletal muscle tissue of different 604 

gain- (6) and loss-of-function mouse models (7, 8) in vivo. In skeletal muscle-specific PGC-1α 605 

knockout mice, the expression of several of these genes was reduced significantly (Fig. 6A-F). 606 

Surprisingly however, some of the predicted transcripts were not altered in this loss-of-607 

function model for PGC-1α, for example Nr0b2 (Fig. 6E). To further clarify the role of PGC-1α 608 

in the regulation of these genes, relative transcript levels were next assessed in muscle-609 

specific transgenic mice for PGC-1α (Fig. 6G-L). In most cases, the genes with a reduction in 610 

their transcription in the PGC-1α muscle-specific knockout animals were inversely elevated 611 

in the PGC-1α muscle-specific transgenic mice. Moreover, some of these genes were likewise 612 

induced by exercise (Fig. 6G-L) and at least in some cases, for example Twf2 and Nr0b2 (Fig. 613 

6J and K), PGC-1α overexpression and physical activity synergistically boosted gene 614 

expression, for Nr0b2even in the absence of any effect of the muscle-specific PGC-1α 615 

transgene per se (Fig. 6K). 616 

617 
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DISCUSSION 618 

Exercise-induced skeletal muscle cell plasticity is a highly complex biological program that 619 

involves the remodeling of a number of fundamental cellular properties. Since PGC-1α 620 

function has been strongly linked to the induction of an endurance-trained muscle 621 

phenotype, we here dissected the PGC-1α-controlled transcriptional network in muscle cells. 622 

First, our results reveal a broad recruitment of PGC-1α to many different sites in the mouse 623 

genome (7512 peaks), the majority of which were either not located within 10 kb distance 624 

from a promoter or close to a gene that was not regulated by PGC-1α over-expression at the 625 

time of harvest of the cells, as has analogously been observed in many other ChIP-Seq 626 

experiments (for example, see ref. 37). Apart from the fact that PGC-1α could mediate long-627 

range enhancer effects that were excluded in our peak-gene assignment, it is conceivable 628 

that PGC-1α recruitment is transcriptionally silent in some binding peaks because it requires 629 

the recruitment of additional cofactors for activation, which are not present in the 630 

conditions or cell type in which our experiments were performed. In addition, it is possible 631 

that a large fraction of PGC-1α binding peaks may be “neutral” in the sense of not having any 632 

direct role in regulating gene expression. 633 

Second, while an almost equally strong effect of PGC-1α on gene induction and repression 634 

has been reported (31), our analysis now indicates that direct PGC-1α-mediated gene 635 

expression is restricted almost exclusively to positively regulated PGC-1α target genes, 636 

whereas the vast majority of gene repression is indirect, i.e. not associated with PGC-1α 637 

recruitment within a 10 kb distance to their promoters. Thus, the fact that almost 95% of all 638 

repressed genes were not linked to PGC-1α recruitment strongly implies that this 639 

coregulator primarily acts as a coactivator, and not as a corepressor as suggested by the data 640 

of some studies (38-40). Importantly, indirect repression of PGC-1α target genes was also 641 

supported by the MARA prediction. The strong indirect inhibition of genes, many of which 642 

are involved in inflammatory processes, is predicted by MARA to be mediated by TFs such as 643 

NFκB and IRF factors. Such an indirect inhibition of NFκB and pro-inflammatory genes by 644 

PGC-1α in muscle cells has been reported previously (33). 645 

One of the main functions of PGC-1α in all cells and organs is to boost mitochondrial gene 646 

transcription and oxidative metabolism. Accordingly, we observed that Gene Ontology terms 647 

related to these pathways were highly enriched when analyzing positively regulated PGC-1α 648 
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target genes in muscle cells. Based on previous studies, the regulation of this core function 649 

could have been assigned to the direct interaction of PGC-1α and ERRα binding to regulatory 650 

elements of these genes (31, 32). Surprisingly, our data indicate that many of the genes that 651 

are involved in oxidative metabolic pathways are indirectly controlled by PGC-1α and, hence, 652 

do not require PGC-1α recruitment to enhancer and promoter elements. Likewise 653 

unexpectedly, the MARA analysis implies ERRα action on direct and indirect PGC-1α-induced 654 

target genes, i.e. in the presence or absence of PGC-1α coactivation. Thus, while these 655 

observations might obviously reflect a temporally distinct control of different PGC-1α target 656 

genes that is not represented in our simultaneous analysis of DNA binding and gene 657 

expression at one time point, it is conceivable that PGC-1α acts primarily as an upstream 658 

regulator of other factors that are subsequently controlling more downstream PGC-1α target 659 

genes without direct involvement of PGC-1α itself. 660 

In skeletal muscle, PGC-1α has been reported to interact with ERRs, PPARs and other nuclear 661 

receptors, as well as myocyte enhancer and nuclear respiratory factors to mediate 662 

transcriptional regulation (3). Accordingly, ERRα and other nuclear receptor binding motifs 663 

were amongst the most highly significant binding elements in our present report. 664 

Importantly however, we also predict a number of so-far unknown TFs to functionally 665 

interact with PGC-1α and thereby contribute to PGC-1α-controlled gene expression in 666 

skeletal muscle. Since a complete functional validation of all new putative TF partners is 667 

beyond the scope of this manuscript, we combined the high-throughput results with several 668 

computational analyses (see Table 1) to select and test some of the potentially most 669 

important factors together with predicted target genes. Notably, in siRNA-based knockdown 670 

experiments, we could show that depletion of FOS and its putative AP-1 multimerization 671 

partners JUN and ATF3 as well as NFE2L2, ZFP143 and GTF2I in muscle cells reduced the 672 

ability of PGC-1α to positively regulate target genes. Second, we could provide evidence of a 673 

co-recruitment of FOS and PGC-1α to the same regulatory sites in the vicinity of AP-1/PGC-674 

1α target genes, confirming a functional interaction between these TFs and PGC-1α. Thus, 675 

our results indicate that the coactivation repertoire of PGC-1α in muscle exceeds the 676 

prediction of previous studies by far. For example, even in our list of the top 15 motifs, 677 

several predicted TFs have not yet been investigated in the context of PGC-1α-controlled 678 

gene expression, including BPTF, FOSL2, REST or RREB1. Future studies will aim at a more 679 
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detailed dissection of the global functional consequences of PGC-1α coactivation of these 680 

TFs in muscle cells. 681 

Curiously, almost all of our analyses, and in particular the principal component analysis, 682 

highlighted the relevance of FOS-JUN-like motifs. In fact, the largest amount of variation in 683 

TFBS occurrence within PGC-1α binding peaks results from either ESRRA-like or FOS-JUN-like 684 

motifs. The FOS-JUN-like motif, in particular, embodies the main binding elements of the AP-685 

1 complex, which consists of different configurations of FOS, JUN, ATF and MAF proteins (35, 686 

41). Our data comparing gene expression in cells with reduced FOS, JUN and ATF3 levels 687 

indicate that PGC-1α functionally interacts with the AP-1 complex in different configurations 688 

in the regulation of specific genes. The differential requirement observed for distinct AP-1 689 

components might provide an additional layer of control for specific PGC-1α target gene 690 

regulation. 691 

AP-1 function itself is regulated by a variety of stimuli, including cytokines, growth factors 692 

and stress, and subsequently controls a number of cellular processes including apoptosis, 693 

cell proliferation and differentiation, stress response and hypoxia (41, 42). Mechanistically, 694 

we classified PGC-1α-induced/AP-1-knocked-down targets in either direct or indirect genes. 695 

Most interestingly, functional analysis of these two groups of genes revealed that when AP-1 696 

and PGC-1α act disjointedly, they are involved in the regulation of mitochondrial and other 697 

metabolic genes while, when coactivated by PGC-1α, AP-1 distinctly alters the expression of 698 

genes that are enriched in the ontology terms “response to hypoxia” and “mTOR signaling” 699 

(Fig. 5F). Intriguingly, a closer analysis of all 47 direct AP-1/PGC-1α target genes revealed 24 700 

genes that are induced by hypoxia, are effectors of hypoxia or attenuate the detrimental 701 

consequences of hypoxia (Fig. 6M). For example, several inhibitors of the mTOR signaling 702 

pathways are included in this group of genes and hypoxia has been described as a 703 

suppressor of mTORC1 activity (43). Another group of genes contributes to the reduction of 704 

cellular stress, detrimental metabolites, reactive oxygen species and increase in cellular 705 

survival to reduce potential harmful consequences of prolonged hypoxia (44). Furthermore, 706 

several genes promote endothelial regeneration, vascular remodeling and vascularization 707 

(45). In this context, PGC-1α has previously been shown to promote VEGF-induced 708 

angiogenesis in skeletal muscle in a hypoxia-inducible factor 1α (HIF-1α)-independent, ERRα-709 

dependent manner (36). Similarly, PGC-1α regulates the hypoxic response of brown fat (46), 710 
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neuronal and endothelial cells (47) even though the mechanisms of cellular protection 711 

exerted by PGC-1α in these experimental contexts have not been elucidated. Our findings 712 

now indicate that, to ensure adequate oxygen and nutrient supplies for oxidative 713 

metabolism in skeletal muscle cells, PGC-1α might coordinate metabolic needs through 714 

ERRα-induced Vegf expression with a broad, stress-induced AP-1-dependent hypoxia 715 

program. Such a functional convergence was found for a subset of the direct AP-1/PGC-1α 716 

target genes that likewise seem to be under the control of ERRα together with PGC-1α (Fig. 717 

5H and I-K). Inversely, for the complementary subset of these genes, the functional 718 

interaction between AP-1 and PGC-1α seems distinct from the ERRα-dependent PGC-1α 719 

target gene regulation. Finally, in vivo evidence supports our muscle cell cultured-based 720 

prediction, considering that many of the AP-1/PGC-1α hypoxia-related target genes exhibit 721 

reduced and elevated transcript levels in PGC-1α muscle-specific knockout and transgenic 722 

animals, respectively. As previously demonstrated for VEGF and skeletal muscle 723 

vascularization (36), many aspects of the phenotypic consequences of exercise-induced 724 

muscle hypoxia occur in the muscle-specific transgenic mice even in the absence of physical 725 

activity. In extension of these studies, we now however found additional genes involved in 726 

this process that show an additional, or in case of Nr0b2, even an exclusive synergistic 727 

activation by exercise in the PGC-1α transgenic animals. Thus, combined with previous 728 

descriptions of muscle plasticity in these mice post-exercise in regard to insulin sensitivity 729 

(29), our present findings reiterate the importance of bona fide exercise even in a genetic 730 

model for endurance training such as the PGC-1α muscle-specific transgenic animals. 731 

In summary, our data provide a first insight into the transcriptional network controlled by 732 

PGC-1α in muscle cells. While one other study of global DNA recruitment of PGC-1α has 733 

been performed in the human hepatoma cell line HepG2 (48), our results highlight the 734 

importance of combining ChIP-Seq experiment, transcriptional data together with a 735 

comprehensive computational modeling approach and experimental validation of predicted 736 

key regulators, in order to be able to discover mechanistic as well as functional outcomes of 737 

such a network. Combined with the knowledge of transcriptional regulation, 738 

posttranslational modifications, alternative splicing and recruitment of different chromatin 739 

remodeling protein complexes, a scenario can thus be conceived in which PGC-1α is able to 740 

control and integrate different signaling pathways using a multitude of different 741 

transcription factor binding partners (10, 11). A better understanding of such regulatory 742 
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networks will eventually allow the targeting of whole biological programs or specific sub-743 

modules in pathological states of disregulation. 744 

745 
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FIGURE LEGENDS 927 

Figure 1. Genome-wide DNA recruitment of PGC-1α in mouse muscle cells. 928 

(A) PGC-1α ChIP-Seq binding peaks (read densities) around the TSS of the genes Acadm and 929 

Cycs obtained from the UCSC Genome Browser. 930 

(B) Real-time PCR validation of the ChIP enrichment measured at the promoter of a set of 931 

PGC-1α target genes. Bars represent fold enrichment over that of the Tbp intron, error bars 932 

represent SEM. *p < 0.05; **p < 0.01; ***p < 0.001. 933 

(C) Mapping ChIP-Seq PGC-1α peaks across the genome. Transcription Start Site (TSS) and 934 

Transcription End Site (TES) are relative to mm9 RefSeq transcripts. “Intergenic”: ≥ 10 kb 935 

from the nearest transcript; “Upstream of TSS”: -10 to 0 kb from the TSS; “Downstream of 936 

TES”: 0 to 10 kb from the TES. Numbers between brackets indicate, for each category, the 937 

ratio between the percentage of PGC-1α peaks and the percentage of the same number of 938 

randomly distributed peaks. 939 

(D) Histogram illustrating the number of direct and indirect genes either up- or down-940 

regulated by over-expression of PGC-1α in muscle cells. Direct genes are those associated to 941 

promoters found within ±10 kb relative to the nearest peak. 942 

(E) Distribution of the distances of 532 peaks from their associated up-regulated gene 943 

promoters. 944 

(F) Distribution of the distances of 43 peaks from their associated down-regulated gene 945 

promoters. 946 

(G-H) Subset of the top significantly enriched GO Biological Process terms identified for 947 

directly and indirectly up-regulated (G) and down-regulated (H) PGC-1α target genes. 948 

 949 

Figure 2. Four distinct mechanistic modes of action for gene expression regulated by PGC-950 

1α and TF partners. 951 

(A) Classification of direct and indirect target genes in MARA (see Methods) 952 
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(B) Distribution of peak distance from the closest promoter and phastCons conservation 953 

score of the peak. 954 

(C) Distribution of log2 expression values for all mouse promoters. Expression values were 955 

averaged across the 3 GFP and the 3 PGC-1α samples. Direct targets are depicted in red, 956 

indirect targets in grey. 957 

(D-G) Activity plot of the motifs ELF1,2,4 (D), ESRRA (E), REST (F) and NFKB1_REL_RELA (G) as 958 

predicted by MARA (Motif Activity Response Analysis). Red: direct targets; green: indirect 959 

targets. 960 

 961 

Figure 3. PCA reveals FOS-JUN-like leucine zippers as a new class of putative functional 962 

PGC-1α partners. 963 

(A) Sequence logo of the top position weight matrix discovered de novo by PhyloGibbs in the 964 

top 200 scoring peaks and of the corresponding canonical motif of ERRα as predicted by 965 

STAMP. 966 

(B) Top scoring results of motif search performed on all 7512 PGC-1α peaks with MotEvo. 967 

Motifs depicted in red and blue correspond to the clusters identified by PCA in panel D. 968 

(C) Top scoring results of motif search performed on the 3656 “non ESRRA-like” peaks with 969 

MotEvo. 970 

(D) Fraction of explained variance of the top 10 PCA components. 971 

(E) PCA analysis of the 7512 PGC-1α peaks. Eigenmotif scores across Principal Component 1 972 

(PC1) and Principal Component 2 (PC2) are shown. Red and blue ellipses highlight motif 973 

clusters, as identified by PC1, of nuclear hormone receptor-like zinc finger and FOS-JUN-like 974 

leucine zipper proteins, respectively. 975 

(F) Correlation between Principal Component 2 scores and binding site posterior sum for 976 

each peak relative to the top 10 PCA motifs. “r” refers to the Pearson correlation coefficient. 977 

 978 
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Figure 4. Validation of TFs associated with top scoring motifs reveals novel functional PGC-979 

1α partners 980 

(A) siRNA-mediated knockdown efficiency for FOS. Bars represent fold induction over 981 

GFP/siCtrl value, error bars represent SEM. *p < 0.05; **p < 0.01; ***p < 0.001. See also 982 

Figure S4. 983 

(B-H) qRT-PCR analysis of PGC-1α target genes whose associated peak contains at least one 984 

binding site for the motif: FOS_FOS(B,L1)_JUN(B,D) (B-D), NFE2L2 (E), ZNF143 (F), GTF2I (G), 985 

NFY(A,B,C) (H). Bars represent % change compared to PGC-1α/siCtrl values. Error bars 986 

represent SEM. *p < 0.05; **p < 0.01; ***p < 0.001. 987 

 988 

Figure 5. PGC-1α controls the hypoxia gene program via a functional interaction with 989 

different configurations of the AP-1 protein complex. 990 

(A-C) qRT-PCR analysis of Cdk15, Nppb and Slc6a19 mRNA levels in response to PGC-1α over-991 

expression and either siFos, siJun or siAtf3 knockdown. Data are normalized to mRNA levels 992 

in GFP infected cells. Error bars represent ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. 993 

(D) Venn diagram illustrating the overlap in number of genes up-regulated by PGC-1α and 994 

down-regulated by either FOS, JUN or ATF3 knockdown. 995 

(E) Histogram illustrating the number of direct and indirect PGC-1α/AP-1 target genes. 996 

(F) Subset of the top significantly enriched Gene Ontology and KEGG terms identified for the 997 

two gene groups illustrated in panel (E). 998 

(G) qRT-PCR validation of the ChIP enrichment of c-Fos measured at the gene of TGFβ1 999 

(validated) and at the promoters of Nr0b2, Gprc5a and Dbt (predicted) target genes. Bars 1000 

represent fold enrichment over PGC-1α exon2 set as 1. Error bars represent SEM. *p < 0.05; 1001 

**p < 0.01; ***p < 0.001. 1002 

(H) PCA analysis of the 7512 PGC-1α peaks. Eigenpeak scores across Principal Component 1 1003 

(PC1) and Principal Component 2 (PC2) are shown. Colored dots correspond to peaks 1004 

associated to the 47 direct PGC-1α/AP-1 targets. Blue dots refer to genes associated to 1005 
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peaks containing only FOS-JUN TFBSs, while red dots refer to genes associated to peaks with 1006 

FOS-JUN and ESRRA TFBSs, either located in the same peak or in distinct PGC-1α peaks. 1007 

(I-K) qRT-PCR analysis of PGC-1α/AP1 targets whose associated peaks contain an ESRRA 1008 

binding site. The bars represent relative mRNA levels compared to AV-shGFP + AV-GFP + 1009 

vehicle, which is set as 1. The error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 1010 

(L-N) qRT-PCR analysis of PGC-1α/AP1 targets whose associated peaks (if any) do not contain 1011 

an ESRRA binding site. The bars represent relative mRNA levels compared to AV-shGFP + AV-1012 

GFP + vehicle, which is set as 1. The error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 1013 

0.001. 1014 

 1015 

Figure 6. PGC-1α controls the hypoxic gene program in muscle in vivo. (A-F) qRT-PCR 1016 

analysis of hypoxic genes in sedentary control (ctrl) and muscle-specific knockout mice 1017 

(MKO). The control group is set as 1. Error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 1018 

0.001. 1019 

(G-L) qRT-PCR analysis of hypoxic genes in treadmill running mice. Control (ctrl) and muscle-1020 

specific transgenic (TG) mice were used under sedentary and exercise conditions. The 1021 

control group sedentary is set as 1. Error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 1022 

0.001. (M) Schematic representation depicting the downstream effects of the functional 1023 

interaction between PGC-1α and the AP-1 complex in the context of the hypoxia gene 1024 

program. Direct targets of PGC-1α and AP-1 are indicated in bold. 1025 

  1026 
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TABLES 1027 

Table 1. Global summary of all analyses performed on PGC-1α peaks. The final score is the 1028 

count of all analyses where a certain motif passed the defined cutoffs. The motifs chosen for 1029 

validation and their corresponding values which satisfied the cutoffs are shown in bold. 1030 

Motif name PCAa Over-repr. 
in all PGC-
1α peaksb 

Over-repr. 
in “non 

ESRRA-like” 
peaksb 

MARA 
activity Z 

score 
directc 

MARA 
activity Z 

score 
indirectc 

Log2FC 
in expr. 
arrayd 

Abs. expr. 
in PGC-1α 
samplee 

Final 
ranking 

ESRRA Yes 1 182 6.04(14.78) 15.49(37.94) 2.31 1829.45 6

FOS_FOS(B,L1)_JUN(B,D) Yes 5 2 0.88(2.14) 1.81(-4.34) 1.78 1508.85 5

ZNF143  27 28 2.48(6.05) 4.65(9.68) 0.38 384.36 5

BPTF  21 12 1.38(3.37) 2.56(-6.25) -0.56 333.34 4

ESR1  17 50 2.33(5.69) 4.53(11.04) -0.47 232.42 4

FOSL2 Yes 6 3 0.88(2.14) 1.51(3.65) -0.98 717.09 4

GTF2I  34 13 2.09(5.10) 2.38(-5.80) -0.55 1207.81 4

NFE2L2 Yes 8 5 0.57(1.38) 1.01(-2.37) -0.38 3673.63 4

NFY(A,B,C)  96 116 2.37(5.80) 3.56(7.62) 1.07 2409.48 4

NR5A1,2 Yes 3 188 3.53(8.66) 7.73(17.00) -0.08 80.97 4

REST  12 6 0.48(1.15) 2.41(5.70) -0.89 328.04 4

RREB1  15 10 1.56(3.82) 2.39(-5.42) 0.05 678.44 4

SP1  24 22 3.99(9.76) 0.61(0.33) -0.32 751.98 4

STAT2,4,6  29 23 0.35(0.52) 4.81(-9.67) -2.72 380.12 4

TLX1..3_NFIC(dimer)  19 17 0.84(-2.05) 4.91(-11.97) -0.34 2339.33 4
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a Requirement for PCA: being among the top 10 most contributing motifs to PC1 and PC2. 1032 
b Requirement for motifs over-representation: being among the top 30 significant motifs; ranking position shown. 1033 
c Requirement for MARA: have a Z-score ≥ 2.0. Numbers between brackets show the difference between the PGC-1α state and the GFP 1034 

state, representing the direction in which the motif activity changes following PGC-1α over-expression. 1035 
d Requirement for the expression array (1): having a log2 fold change value ≥ 1.0 (corresponding to 2 folds up-regulation) 1036 
e Requirement for the expression array (2): having an absolute expression in the PGC-1α sample ≥ 100 1037 

 1038 














