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reflect the constraints imposed by the Argonaute protein on 
miRNA-mRNA interaction. The process by which MIRZA cal-
culates the energy of a possible miRNA-mRNA target hybrid in 
terms of its 27 energy parameters is illustrated in Figure 1a.

Given a set of parameters, MIRZA predicts the frequencies 
with which RNA-induced silencing complexes (RISCs) bind to 
different mRNA fragments in the mRNA pool. We infer MIRZA’s 
parameters by maximizing the binding probabilities of the mRNA 
fragments observed in an Ago2-CLIP sample (Online Methods). 
This involves calculating a ‘target quality’ R(m|µ) that quanti-
fies the total affinity of each miRNA µ for each fragment m. 
Specifically, R(m|µ) corresponds to the enrichment of fragment m 
among target sites bound by miRNA µ, relative to m’s abundance 
in the mRNA pool. Calculating R(m|µ) involves summing over all 
possible hybrid structures that m can form with µ. The fraction of 
time that fragment m is bound by a RISC loaded with miRNA µ is 
proportional to the ‘target frequency’ R(m|µ)πµ, which depends 
on the fractions πµ of mRNA-bound RISCs loaded with miRNA µ. 
These fractions, which we call miRNA priors, are inferred for each 
given CLIP data set. The overall probability of immunoprecipitat-
ing fragment m relative to its background frequency is then given 
by R(m) = ΣµR(m|µ)πµ, and the likelihood of the entire data set 
by the product R(D) = ∏iR(mi) over all observed fragments mi.

We first tested the procedure on synthetic data sets containing 
seed-matching sites and 3′ compensatory sites similar to those 
previously described7. MIRZA successfully inferred the energy 
parameters that were used in generating these synthetic data sets 
and perfectly predicted which miRNA was associated with each 
site (Supplementary Note). To infer the energy parameters of real 
miRNA-target interactions from Ago2-CLIP data, we used 2,988 
mRNA regions that were reproducibly cross-linked in at least 
three of four Ago2-CLIP data sets from ref. 8 (Supplementary 
Table 1) and included all miRNAs that were expressed in the 
HEK293 cells in which the experiments were performed (Online 
Methods). Ago2 was found to preferentially cross-link to nucleo-
tides located in the center of the hybrid between the target site 
and the miRNA. These nucleotides are easily identifiable through 
diagnostic mutations that are introduced during cDNA prepara-
tion and are used to pinpoint the miRNA binding sites with very 
high resolution8. Thus, to generate our input set of miRNA bind-
ing sites, we extracted 51-nucleotide-long regions centered on the 
position with the highest number of cross-link diagnostic muta-
tions. We performed 100 parameter-optimization runs starting 
with randomly chosen initial values for all parameters.

Different optimization runs yielded highly reproducible param-
eter sets (Fig. 1b and Supplementary Note). Consistent with the 
known importance of the seed region, positions 2–7 have the 
largest positive contribution to the energy (parameters E2–E7  
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fraction of human mirna target sites are noncanonical and 
that predicted target-site affinity correlates well with the 
extent of target destabilization. our model provides a rigorous 
biophysical approach to mirna target identification beyond  
ad hoc mirna seed–based methods.

MicroRNAs (miRNAs) are a large class of regulators of gene 
expression that post-transcriptionally modulate the stabil-
ity of mRNA targets and their rate of translation into proteins. 
Although in mammals, 7 or 8 nucleotides of perfect comple-
mentarity between the miRNA 5′ end and the target mRNA are  
frequently sufficient to elicit a response (typically measured in 
terms of mRNA degradation1), many such ‘miRNA seed’–matching  
sites have no apparent effect. Thus, current target prediction 
methods additionally make use of conservation and sequence 
context information to reduce false positive predictions2,3. 
‘Noncanonical’ sites, which are not perfectly complementary to 
the miRNA seed region yet are effective in downregulating gene 
expression, have also been described4,5. However, these are con-
sidered rare, and the currently most accurate prediction methods 
do not attempt to identify them.

Recently developed methods for Argonaute protein cross-linking  
and immunoprecipitation (Ago-CLIP)6 enable experimental iden-
tification of miRNA binding sites transcriptome wide. Although 
this provides the opportunity to investigate in detail the principles 
and determinants of miRNA-mRNA target interaction, Ago-CLIP 
on its own does not identify which miRNA guided Ago to each 
binding site or the structure of the miRNA–target site hybrid. 
Here we introduce a rigorous biophysical model of miRNA- 
target interaction and infer its energy parameters from Ago-CLIP 
data. The model (which we called MIRZA; see Online Methods) 
includes parameters associated with base pairs and loops and  
specific miRNA position–dependent energy parameters that 
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data (Supplementary Note), our model captures several known 
structural features of miRNA-target interaction such as the pre-
dominant binding of the nucleotides in the seed region, the less 
frequent binding of position 1, and the possibility of compen-
satory base-pairing at the miRNA’s 3′ end. MIRZA makes the 
specific prediction that nucleotides 14–16 of the miRNA are  
base-paired with the target roughly 50% of the time and that  
positions 18 and 19 are bound even more than 60% of the time.

For more than 26% of the most enriched, reproduc-
ibly cross-linked sites, the most likely hybrid is noncanonical 
(Supplementary Note). This is noteworthy because functional 
noncanonical sites are thought to be rare, and the more accu-

in Fig. 1b), followed by positions 13–16 (E13–E16) and 18 and 
19 (E18 and E19). In contrast, hybridization of position 9 (E9) 
is strongly disfavored, as is opening a loop (Eo). Once a loop is 
opened, symmetric loops (Esym) and bulges in the miRNA (Eµ) 
are clearly favored over bulges in the mRNA (Em).

With the fitted parameters we can predict which miRNA µ is 
most likely to bind each fragment m, as well as the structure of 
the most likely hybrid between m and µ. Figure 1c statistically 
summarizes the structures of these predicted hybrids. Notably, 
even though no specific knowledge about miRNA-target inter-
actions went into the inference of its parameters, and in contrast 
to general models of RNA-RNA interaction applied to the same 
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figure 1 | A biophysical model of miRNA-target 
interaction. (a) Sketch of a miRNA-mRNA 
hybrid illustrating the way MIRZA assigns a 
binding energy to the interaction. Nucleotides 
involved in base-pairing are indicated in orange, 
symmetric loops in red, bulges in the miRNA in 
blue and dangling ends in cyan. Arrows point 
from the independent energy terms (defined in 
Online Methods) to the corresponding structural 
elements (base pairs, loop openings and 
extensions). (b) Summary of energy parameters 
inferred from 100 independent optimization 
runs on the Ago2-CLIP data. Green boxes show 
interquartile ranges, the 5th and 95th percentiles 
are indicated by whiskers, and black dots indicate 
median values of fitted parameters across the 
runs. The sets of parameters that yielded the 
highest and second-highest probability are 
shown as purple and cyan dots, respectively.  
a.u., arbitrary units. (c) Summary of the 
predicted hybrid structures; colors indicate the 
fraction of hybrids in which a given nucleotide is 
involved in a base pair (orange), symmetric loop 
(red), bulge (blue) or dangling end (cyan).
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figure 2 | Assessment of functionality of MIRZA-identified miRNA  
targets. (a) Inferred fraction of silencing complexes loaded with  
miRNA µ (πµ, shown on log10 scale), and the fraction of noncanonical  
target sites for miRNA µ (Pearson correlation coefficient R = 0.58,  
t-test P value = 2.1 × 10−10). (b) Changes (log10) in the expression  
level of mRNAs containing MIRZA-predicted noncanonical binding  
sites upon transfection of the corresponding miRNAs (expression  
data from ref. 10). In each column, the box indicates the interquartile  
range, the black line the median, the red dot the mean, and the whiskers the 5th and 95th percentiles. The first two columns correspond to transcripts 
without and with seed matches for the transfected miRNA, and the last three columns correspond to transcripts containing a noncanonical, MIRZA-
predicted site with a target quality score among the lowest, middle and highest 33%. (c) Median log fold change of targets predicted by MIRZA (black), 
TargetScan PCT

2 (red), PicTar15 (cyan), ElMMo3 (dark blue), TargetScan context+16 (brown), PITA17 (yellow), miRanda18 (orange), rna22 (ref. 19) (violet), 
RNAhybrid20 (light green) and RNAduplex21 (dark green), averaged over 38 transfection experiments from five studies10–14. The gray dots show fold 
changes of targets obtained by intersecting Ago-CLIP with computationally predicted sites (starBase database22). (d) Estimated total number of 
functional targets predicted by different methods averaged over all transfection experiments. Colors as in c. (e,f) Plots as in c and d, respectively, but 
considering only noncanonical targets.
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rate current target prediction methods focus solely on canonical 
sites. However, recent experimental studies9 hinted that nonca-
nonical sites may be more prevalent, particularly those in which 
an mRNA nucleotide is bulged out between positions 5 and 6. 
Applying MIRZA to the data from ref. 9, we indeed find that, 
depending on the sample, 9%–20% of the predicted miR-124 sites 
correspond to this particular noncanonical site (Supplementary 
Table 2). MIRZA, however, predicts several other types of non-
canonical sites, such as contiguous pairing of only nucleotides 
2–6, in all CLIP data sets.

MIRZA further infers that the fraction of noncanonical sites is 
higher for miRNAs with the highest abundance in RISCs—that is, 
for those with high prior πµ—and that the fraction of noncanonical  
sites can be as high as 60% (Fig. 2a). The inferred abundance πµ 
correlates significantly with the expression level of the miRNA, 
suggesting that the target spectrum of a miRNA depends crucially 
on its expression level: miRNAs with low expression target mainly 
high-affinity canonical sites, whereas miRNAs with high expres-
sion target those sites and also large numbers of noncanonical sites, 
which, on average, have lower affinity (Supplementary Note).

Gene expression analysis shows that the noncanonical sites 
inferred from the CLIP data are functional, inducing a signifi-
cant downregulation of host transcripts upon miRNA trans-
fection (Fig. 2, z values of –4.44, –4.89 and –6.01 for the three 
categories of noncanonical sites; and Online Methods). Although 
sites with higher predicted target quality show stronger down-
regulation, even transcripts containing the weakest noncanonical 
sites show stronger downregulation than transcripts that simply 
carry seed matches (Fig. 2b). That noncanonical sites show sig-
nificantly more evolutionary conservation than is expected by 
chance (P = 0.0048; Supplementary Note) is further indication of  
their functionality.

To compare the accuracy of the target sites identified by MIRZA 
in Ago2-CLIP data with those of miRNA target prediction meth-
ods, we analyzed 38 transfection experiments involving 26 differ-
ent miRNAs10–14, comparing the miRNA-induced fold changes 
of transcripts predicted by these methods (Online Methods 
and Supplementary Note). To assess the ability of a method to 
identify the most strongly downregulated targets, we sorted its 
predicted targets by their scores and calculated the median fold 
change of the top n targets as a function of n (Fig. 2c). To assess 
the total number of functional targets predicted by a method, 
we calculated how many more targets were downregulated com-
pared to the number expected by chance (Fig. 2d). Although the 
relative performance of the different methods varies across data 
sets, MIRZA’s predictions show the strongest downregulation on 
average (Fig. 2c) and for the large majority of individual data sets 
and miRNAs (Supplementary Note). Furthermore, in terms of 
the total number of functional targets that it predicts (Fig. 2d and 
Supplementary Note), MIRZA matches the best methods that use 
evolutionary conservation (TargetScan PCT and ElMMo) or the 
context of the sites (TargetScan context and miRanda).

It is in the prediction of functional noncanonical targets that 
MIRZA’s performance stands out (Fig. 2e,f and Supplementary 
Note). MIRZA identifies at least threefold more functional targets 
than any other method, and its targets undergo much stronger 
downregulation, which is strongly correlated with their MIRZA 

score (Fig. 2e). Moreover, this performance is consistent across all 
data sets and individual miRNAs (Supplementary Note). Finally, 
the partial overlap between the sites identified for some miRNAs 
by MIRZA and by algorithms based on conservation or context 
suggests that miRNA target prediction could be further improved 
by combining MIRZA’s biophysical model with context and  
conservation information.

MIRZA is made available among the tools provided on our 
CLIPZ server (http://www.clipz.unibas.ch/).

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.

acknoWledgments
We are grateful to N. Beerenwinkel and S. Bergmann for comments in the initial 
stages of this work. We are also thankful to A.R. Gruber and the other members 
of the Zavolan group for providing input and feedback on the algorithm and 
the manuscript, A. Crippa for help with the code distribution and P.J. Balwierz 
for help converting the LaTeX manuscript to Word. M.K. was supported by Swiss 
National Science Foundation ProDoc grant PDFMP3_123123 to M.Z. and E.v.N. 
The work was additionally supported by Swiss National Science Foundation grant 
31003A_127307 to M.Z.

author contributions
Conceived of and designed the experiments: E.v.N. and M.Z. Performed the 
experiments: M.K. and J.H. Analyzed the data: J.H., M.K., E.v.N. and M.Z. Wrote 
the paper: J.H., M.K., M.Z. and E.v.N. 

comPeting financial interests
The authors declare no competing financial interests.

Published online at http://www.nature.com/doifinder/10.1038/nmeth.2341.   
reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1. Bartel, D.P. Cell 136, 215–233 (2009).
2. Friedman, R.C., Farh, K.K.H., Burge, C.B. & Bartel, D.P. Genome Res. 19, 

92–105 (2009).
3. Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. BMC 

Bioinformatics 8, 69 (2007).
4. Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K. & Slack, F.J. Genes Dev. 18, 

132–137 (2004).
5. Lal, A. et al. Mol. Cell 35, 610–625 (2009).
6. Chi, S.W., Zang, J.B., Mele, A. & Darnell, R.B. Nature 460, 479–486 

(2009).
7. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. PLoS Biol. 3, e85 

(2005).
8. Kishore, S. et al. Nat. Methods 8, 559–564 (2011).
9. Chi, S.W., Hannon, G.J. & Darnell, R.B. Nat. Struct. Mol. Biol. 19, 321–327 

(2012).
10. Linsley, P.S. et al. Mol. Cell. Biol. 27, 2240–2252 (2007).
11. Grimson, A. et al. Mol. Cell 27, 91–105 (2007).
12. Leivonen, S.K. et al. Oncogene 28, 3926–3936 (2009).
13. Selbach, M. et al. Nature 455, 58–63 (2008).
14. Gennarino, V.A. et al. Genome Res. 19, 481–490 (2009).
15. Grün, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. & Rajewsky, N.  

PLoS Comput. Biol. 1, e13 (2005).
16. Garcia, D.M. et al. Nat. Struct. Mol. Biol. 18, 1139–1146 (2011).
17. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. Nat. Genet. 39,  

1278–1284 (2007).
18. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Genome Biol. 11, 

R90 (2010).
19. Miranda, K.C. et al. Cell 126, 1203–1217 (2006).
20. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. RNA 10, 

1507–1517 (2004).
21. Lorenz, R. et al. Algorithms Mol. Biol. 6, 26 (2011).
22. Yang, J.H. et al. Nucleic Acids Res. 39, D202–D209 (2011).

brief communications
np

g
©

 2
01

3 
N

at
ur

e 
A

m
er

ic
a,

 In
c.

 A
ll 

rig
ht

s 
re

se
rv

ed
.

http://www.clipz.unibas.ch/
http://www.nature.com/doifinder/10.1038.nmeth.2341
http://www.nature.com/doifinder/10.1038.nmeth.2341
http://www.nature.com/doifinder/10.1038.nmeth.2341
http://www.nature.com/doifinder/10.1038.nmeth.2341
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


where the product is over all n mRNA fragments mi that are  
sampled. The probability of observing a fragment mi when ran-
domly selecting fragments from the mRNA pool is just P(mi|B). 
Thus, the ratio of probabilities for observing the data under our 
model as opposed to random sampling is given by 

R D P m IP
P m B

R mi

i
i

i

n

i

n
( ) ( | )

( | )
( )= =

==
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11

The ratios R(mi) quantify to what extent the observation of mi is 
explained by miRNA binding, i.e., they give the enrichment of 
fragment mi when immunoprecipitating with a RISC relative to 
its abundance in the mRNA pool. Using equation (1) above we 
can write the enrichment of a fragment in terms of its enrichment 
for individual miRNAs 

R m P m IP
P m B

P m
P m B

R m( ) ( | )
( | )

( | )
( | )

( | )= = =∑ ∑
μ
π μ πμ μ

μμ

Target quality and target frequency. The quantity R(m|µ) rep-
resents the ratio of the probability that a RISC guided by miRNA 
µ binds to segment m and the background probability P(m|B) of 
isolating segment m. In other words, R(m|µ) is the enrichment 
of fragment m among all fragments bound to a RISC loaded with 
miRNA µ relative to its background frequency P(m|B). Because 
R(m|µ) quantifies the quality of segment m for miRNA µ (i.e., 
relative to all other possible target segments) we will refer to it 
as the target quality. Note, however, that for a given segment m, 
the miRNA with the highest target quality R(m|µ) is not neces-
sarily the miRNA that most frequently associates with segment 
m because this latter quantity depends also on the relative abun-
dances πµ of RISCs that are loaded with different miRNAs. As 
can be seen from equation (5), the fraction of time that segment 
m is bound by miRNA µ, and, consequently, the miRNA that 
most frequently binds to segment m, is the one that maximizes 
the product R(m|µ)πµ. We will refer to R(m|µ)πµ as the target 
frequency of miRNA µ for segment m.

Parameterization of the binding energies. Ignoring the pos-
sibility that the miRNA or the mRNA fragment form internal 
structures (base-pairing within themselves), our model assumes 
that each possible hybrid structure σ consists of one or more 
hybridized pairs of nucleotides that are separated by unpaired 
nucleotides, forming either symmetrical or asymmetrical loops, 
depending on whether the number of unpaired nucleotides in the 
miRNA and mRNA are the same or different. A hybrid σ can then 
be uniquely represented using the following set of ‘moves’: an ini-
tial hybridized pair (i,j), i.e., position i in the miRNA hybridized 
to position j in the mRNA fragment; addition of another hybrid-
ized pair immediately following the current pair; opening of a 
loop; addition of a symmetric pair of unhybridized nucleotides 
to the loop; addition of an unpaired nucleotide in the mRNA 
fragment; and addition of an unpaired nucleotide in the miRNA.

To ensure that each possible hybrid can be realized in only 
one way with these moves, we make the convention that asym-
metric additions to loops can be followed only by more asym-
metric additions of the same type or by a hybridized pair. 
Similarly, symmetric additions can be followed only by additional  

online methods
Inference of the MIRZA model. We defined a parameterized 
biophysical model to assign binding free energies to all possible 
miRNA-mRNA hybrid structures and quantify the binding affinity 
of different mRNA fragments to the RNA-induced silencing com-
plex (RISC). Because a CLIP experiment does not provide accu-
rate binding frequencies for all possible mRNA segments in the 
transcriptome but rather gives a set of fragments that are enriched 
relative to the expression of their mRNAs, we extract a set of highly 
enriched target sites, m1, m2, … mn of standardized length M from 
the CLIP data, as described in “Argonaute 2 CLIP experimental 
data sets” below. We will make the assumption that the probability 
of obtaining a particular mRNA fragment m is proportional to the 
product of the abundance of the mRNA fragment and the fraction 
of time that the fragment is bound to a RISC. The latter quantity will 
depend on the binding free energy between the mRNA and RISC. 
Let P(m|B) denote the ‘background’ abundance of mRNA fragment 
m in the transcriptome. Let P(m|IP) denote the probability that 
when a single bound RISC is immunoprecipitated, this complex will 
contain a certain mRNA fragment m. This probability depends not 
only on the relative abundance of m but also on the relative abun-
dances of the different miRNAs that can interact with the mRNA 
fragment in a RISC. Formally, the probability P(m|IP) can be writ-
ten as a sum over the probabilities P(m,µ|IP) that the immunopre-
cipitated fragment is bound to a RISC containing mature miRNA µ. 
If we denote by πµ the fraction of all RISCs that are bound to some 
target site and that are guided by miRNA µ, then we have 

P m P m P m( | ) ( , | ( |IP IP) )= =∑∑ μ μ π
μ

μ
μ

where P(m|µ) is the probability that a bound RISC containing 
miRNA µ is bound to fragment m.

The guide miRNA can form different hybrid structures with 
an mRNA fragment. Denoting individual hybrid structures by σ  
and the binding free energy of a RISC-embedded miRNA µ 
with mRNA fragment m in configuration σ by E(σ,µ,m), from 
the standard Boltzmann distribution of statistical physics we 
have that the fraction P(m|µ) of all RISCs that are loaded with 
miRNA µ and are bound in configuration σ to mRNA segment 
m is proportional to eE(σ,µ,m)P(m|B) (note that we set the inverse 
temperature parameter β of the Boltzmann distribution to 1, for 
notational simplicity, which can be thought of as setting the scale 
of the energy parameters in units of k × T, k being the Boltzmann 
constant and T the temperature). Thus, a RISC loaded with  
miRNA µ is bound to mRNA fragment m with probability 

ʹ ʹ

P m
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where the sum in the numerator is over all possible hybrid struc-
tures σ, and the sum in the denominator is over all possible hybrid 
structures and all possible M-nucleotide-long mRNA fragments 
m′. The probability of the entire data is 
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i

n
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∏
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(4)
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(2)

(3)

(5)
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symmetric additions, by an asymmetric addition or by a  
hybridized pair. Hybrids have to end in a hybridized pair, and the 
remaining nucleotides in the mRNA fragment and miRNA are 
considered dangling ends.

For each possible hybrid that can be constructed as described 
above, we assume that the binding energy can be decomposed 
into a structural and a sequence component: 

= +E m E E mh( , , ) ( ) ( , , )σ μ σ σ μstruc

The structural contributions to the energy are determined from 
the moves and are an energy Eo for every loop that is opened, an 
energy Esym for symmetrically extending a loop by one base in 
the miRNA and one base in the mRNA, an energy Eµ for asym-
metrically extending a loop by an unpaired base in the miRNA, 
an energy Em for asymmetrically extending a loop by an unpaired 
base in the mRNA fragment and an energy Ei when position i in 
the miRNA is hybridized. The latter reflects the constraints that 
the Argonaute protein imposes on the embedded miRNA, for 
example, through the accessibility of the corresponding position 
of the miRNA when it is inside a RISC. Without loss of generality, 
dangling bases in mRNA and miRNA per definition are assigned 
an energy Ed = 0. Thus, the structural part Estruc(σ) depends on 
the number of loops, their sizes, their (a)symmetry and the posi-
tions in the miRNA that are hybridized. This dependency on 
miRNA positions enters through the energies Ei of the hybrid-
ized positions.

The sequence-dependent part of the energy consists of a sum of 
energy contributions for each hybridized pair, with Eαβ being the 
energy contribution for hybridizing nucleotide α in the mRNA to 
nucleotide β in the miRNA. If we denote by h the set of miRNA 
positions that are hybridized in structure σ, we have 

E m Eh mi i
i h

( , , )σ μ μ=
∈

∑

with mi being the nucleotide occurring at the position in the 
mRNA segment hybridized to miRNA position i, and µi the nucle-
otide at position i of the miRNA. Although in the most general 
case we would need 16 parameters to describe these contribu-
tions, we have considered only the usual base-pairing interac-
tions A-U/U-A, C-G/G-C and G-U/U-G, which we described by 
parameters EAU = EUA, ECG = EGC, and EGU = EUG. We assign all 
other combinations a very negative energy, i.e. –∞, such that they 
have zero probability of occurrence.

Removing redundancies of the parameterization. To infer the 
energy parameters from the observed data D, it is important to 
determine whether our parameterization contains redundan-
cies, i.e., if there are global transformations of the parameters 
that would leave the overall likelihood ratio R(D) invariant. In 
the model described above, a redundancy results from the fact 
that for every hybridized base pair (α,β), there is a sequence-
dependent contribution Eαβ and a structural contribution Ei from 
the hybridized position i in the miRNA. Thus, if we replace Eαβ 
with Eαβ + c (with c a constant) for all pairs (α,β) and at the same 
time replace Ei with Ei – c, then all energies E(σ,m,µ) remain 
unchanged. To remove this redundancy, we assign one of these 
parameters a neutral value. We chose to set EGU = 0. The energies 

Ed of the dangling ends are set to 0 as well to avoid redundancies 
in the parameterization.

As detailed below, we fit all the energy parameters of the model 
by optimizing the likelihood of the observed CLIP data. The 
reader may wonder why certain parameters, such as the energies 
associated with base-pairing, are not simply set to experimentally 
estimated values such as those that are used in RNA secondary-
structure prediction algorithms. It is important to stress that the 
energy parameters that we are inferring here are the effective con-
tributions of various structural components (for example, base 
pairs and loops) in the context of the RISC. That is, the interaction 
of the miRNA and mRNA target will likely be strongly influenced 
by the context provided by this protein complex, and it is therefore 
not clear a priori what the contributions of different base pairs 
and loops should be.

Calculating target qualities and best hybrids. To infer the 
energy parameters, we search for the set of parameters that 
maximize the ratio R(D) as given in equation (5); this requires 
calculating the target qualities R(m|µ), which in turn requires 
summing over combinatorially many hybrid structures σ, as in 
equation (2), i.e., performing partition sums. As detailed in the 
Supplementary Note, we have derived recursion relations that 
allow us to efficiently calculate these partition sums with standard 
dynamic programming techniques. In addition, as also detailed in 
the Supplementary Note, similar recursion relations can be used 
to determine the best hybrid structure for each pair of an mRNA 
fragment m and miRNA µ, i.e., the structure with the highest 
binding energy between fragment and miRNA.

Fitting the fraction of RISCs carrying specific miRNAs. Apart from 
all the energy parameters, the final likelihood ratio R(D) also depends 
on the fractions πµ of bound RISCs that are loaded with miRNA 
µ. As detailed in the Supplementary Note, given a set of energy 
parameters, the fractions πµ that maximize the likelihood ratio 
R(D) can be easily calculated using an expectation-maximization  
procedure. Thus, the numerical parameter-optimization procedure 
involves only the energy parameters.

Implementation of the parameter optimization. We imple-
mented our MIRZA algorithm in C++, in an object-oriented 
framework. It takes as input FASTA-formatted files of mRNA frag-
ments and miRNA sequences. To avoid biases introduced by the 
slight differences in length of different miRNAs, we trimmed all 
miRNA sequences to 21 nucleotides. We optimized the parameters 
of our biophysical model through simulated annealing, for which 
we used the GNU scientific library (http://www.gnu.org/s/gsl/)  
and an object-oriented library for numerical programming in  
C++ (O2scl, http://o2scl.sourceforge.net/). For efficiency, we 
further used the Open Multi-Processing architecture (OpenMP, 
http://openmp.org/wp/), which supports multiplatform shared-
memory parallel programming in C/C++ and Fortran. The 
parameters that we optimized were the base-pairing energies EAU 
and ECG, the loop energies Eo, Esym, Eµ, Em and the positional 
hybridization energies Ei, where i = 1, 2, … 21.

For both the synthetic and Ago2 CLIP data sets, we performed 
multiple simulated annealing runs starting from random initial 
conditions, and we analyzed the reproducibility of the fitted 
parameters (see main text and Supplementary Note).

(7)

(6)
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computed average expression levels per Entrez Gene ID. We then 
computed the log2 fold change in expression levels upon miRNA 
transfection as compared to scrambled pre-miR control.

Another set of miRNA transfections in HeLa cells13 involved 
miR-155, miR-16, miR-1, miR-30a and let-7b. We downloaded the 
CEL files from http://psilac.mdc-berlin.de/download/. Of these 
five miRNA transfections in HeLa, we excluded the let-7b experi-
ment because of the reported negative feedback of let-7b on the 
RNAi pathway due to direct targeting of Dicer13.

Finally, we obtained the CEL files of the miR-26b and miR-98 
overexpression in HeLa cells14 from GEO (accession GSE12100).

We imported the CEL files into the R software (http://www.R-
project.org/) using the Bioconductor “affy” package23. The 
probe intensities were corrected for optical noise, adjusted for 
nonspecific binding and quantile-normalized with the gcRMA 
algorithm24. Probe sets with more than two probes mapping 
ambiguously (more than one match) to the genome were dis-
carded, as were probe sets that mapped to multiple genes. We 
then collected all remaining probe sets matching a given gene 
and averaged their log2 fold changes to obtain an expression  
change per gene.

All together, these five data sets cover changes in gene  
expression in 38 different transfection experiments involving  
26 distinct miRNAs.

Comparison of miRNA target prediction methods. Some methods 
predict miRNA target sites, whereas others predict transcripts that 
are targeted by individual miRNAs. To be able to compare these 
heterogeneous predictions, we worked at the level of transcripts; 
for methods that predicted target sites, we assumed that the tran-
script score is given by the highest score of any predicted site in that 
transcript. The methods that we considered were ElMMo3 (http://
www.mirz.unibas.ch/ElMMo3/), which estimates the selection pres-
sure on individual sites through comparative genomics; PicTar15 
(http://dorina.mdc-berlin.de/rbp_browser/hg18.html), another 
comparative genomics-based method whose predictions are widely 
used; TargetScan PCT

2 (http://www.targetscan.org/), another evolu-
tionary conservation–based method that, on the basis of previous 
evaluations, is considered one of the most accurate methods for 
identifying functional target sites; TargetScan context+16, which 
predicts miRNA target sites according to the sequence context in 
which they occur in their host transcripts; miRanda18 (http://www.
microrna.org/microrna/getDownloads.do), a method that in its cur-
rent version, mirSVR, uses support-vector regression based on a 
list of features of both the miRNA and its putative target (miRanda 
provides four separate files of targets, depending on whether targets 
are filtered on the basis of mirSVR score and/or conservation; we 
used the “S” sets of targets that are filtered by score, irrespective 
of conservation); PITA17, release of 31 August 2008 (we extracted 
predictions for the miRNAs of interest from the web site, http://
genie.weizmann.ac.il/pubs/mir07/mir07_dyn_data.html, queried 
with default parameters), which computes an energy of interac-
tion between miRNA and target site, taking into account the struc-
tural accessibility of the target site; RNAduplex20, which computes 
the minimum free energy of hybridization between the two RNA 
strands (we downloaded RNAduplex as part of the ViennaRNA 
package from http://www.tbi.univie.ac.at/RNA/RNAduplex.
html and applied it to the entire set of representative 3′ UTRs of 
human genes); RNAhybrid21, which uses an approach similar to 

Argonaute 2 CLIP experimental data sets. Of the recently 
reported data sets of Argonaute 2 binding sites, those generated 
with PAR-CLIP (photoactivatable ribonucleoside–enhanced 
cross-linking and immunoprecipitation) exhibit frequent diag-
nostic mutations (transition of uridine to cytidine), typically in 
the center of the miRNA-target site hybrid8. Within each single-
linkage cluster that contained sites from at least three of four 
Ago2-CLIP or PAR-CLIP samples from ref. 8 that were generated 
with various protocols (GEO database accessions GSM714642, 
GSM714644, GSM714645 and GSM714647), we identified the 
nucleotide with the highest frequency of cross-link diagnostic 
mutations and extracted regions of 51 nucleotides centered on 
the position of cross-link (cross-link–centered regions, CCRs). 
A set of 2,988 high-confidence CCRs that were among the top 
3,000 both in terms of coverage by sequence reads and in terms 
of enrichment in the read coverage relative to the read coverage 
of the same region in HEK293 mRNA-seq samples were retained 
for further analyses (Supplementary Table 1).

miRNA transfection data for functional analysis of predicted 
sites. To investigate the functionality of canonical and nonca-
nonical targets predicted by various methods, we used published 
microarray data sets of changes in gene expression following the 
transfection of different miRNAs. We selected data sets corre-
sponding mostly to miRNAs that are expressed in HEK293 cells 
from which CLIP data have been obtained. We further retained 
data from successful transfection experiments, meaning those 
in which the mRNAs carrying canonical sites for the transfected 
miRNA in their 3′ UTRs were significantly downregulated as 
compared to the other remaining mRNAs (Wilcoxon’s rank-sum 
test on log2 fold changes, P value cutoff of 0.001) and discarded 
the other data sets. The five data sets that we thus used are sum-
marized below.

In a first study10, 11 miRNAs (miR-16, miR-15a, miR-106b, 
miR-20a, miR-103, miR-17, miR-20a and let-7c) were transfected 
in HCT116 and DLD-1 cell lines, each in duplicate. The processed 
differential expression data from the GEO database (accession 
GSE6838, experiments GSM156532, GSM156541, GSM156543, 
GSM156544, GSM156545, GSM156546, GSM156549, 
GSM156550, GSM156553, GSM156554, GSM156555, 
GSM156556, GSM156557, GSM156558, GSM156576 and 
GSM156580) together with the probe to transcript mapping 
provided by the authors as a SOFT-formatted file were down-
loaded. Probes associated with RefSeq transcripts according to 
the annotation were kept for subsequent analysis. Differential 
expression at the gene level was obtained by mapping RefSeq IDs 
to Entrez Gene IDs using the RefSeq database downloaded on 11 
January 2007. For each gene, fold changes were averaged over the  
duplicate experiments.

In the second study11, nine miRNAs (miR-122, miR-128, miR-
132, miR-133a, miR-142-3p, miR-148b, miR-181a, miR-7 and 
miR-9) were transfected in HeLa cells, and mRNA expression 
was profiled 12 h and 24 h post-transfection. We retrieved the 
processed differential expression data from GEO (GSE8501) and 
then applied the same analysis performed on the previous data set 
to the fold-change data from the 24-h time point.

In the third study12, miR-18a, miR-193b, miR-302c and 
miR-206 were transfected into MCF7 cells. We again retrieved 
the processed data from the GEO database (GSE14847) and  
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of top predicted targets. We used the functions f(n) to estimate 
the total number of functional targets as follows. For each data 
set, we first determined the total fraction ftot of downregulated 
transcripts among all transcripts for which fold change data were 
measured. Typically, ftot is close to 50%. Thus, if we were to make 
random predictions, we expect a fraction ftot of the predicted 
targets to be downregulated. If f(n) is considerably larger than 
ftot, this indicates that there must be true targets among the n 
predicted targets. Note that, if a fraction ρ(n) of the n predicted 
targets are true targets, and using the fact that true targets must 
be downregulated per definition, then the total fraction f(n) of 
downregulated targets will be f(n) = ρ(n) + ftot (1 – ρ(n)). From 
this we can estimate the total number of functional targets as 
nfunc(n) = n × ρ(n) = n (f(n) – ftot)/(1 – ftot). For each method and 
each transfection experiment, we determined the total number of 
functional targets by maximizing nfunc(n) over n: i.e., we chose the 
number n of top predicted targets such that nfunc(n) is maximal 
nfunc = maxn[nfunc(n)]. For each method, we also determined the 
average number of functional targets <nfunc> for each of the five 
data sets by averaging nfunc over the transfection experiments in 
a data set. We also calculated an overall <nfunc> averaging over all 
38 transfection experiments. Finally, all these calculations were 
also performed in a way that restricted the targets to those tran-
scripts that do not contain a canonical match to the seed sequence 
of the miRNA, as described in the next section.

Noncanonical binding sites. To identify noncanonical target  
sites among the CLIP sites, we used the following stringent pro-
cedure. We first predicted with MIRZA the miRNA µ with which 
each mRNA fragment m most likely interacted, i.e., the miRNA 
for which the mRNA fragment had the highest target frequency 
R(m|µ)πµ. Next we determined the optimal hybrid σ for this 
miRNA-mRNA target pair with the recursion relations described 
in the Supplementary Note, and on the basis of these hybrids we 
divided the set of mRNA fragments into two subsets: canonical 
sites, which base-paired contiguously with nucleotides 2–8 of the 
miRNA or had an exact match to positions 2–7 of the miRNA 
followed by an adenine (which would be positioned opposite posi-
tion 1 of the miRNA), and noncanonical sites, for which the above 
condition was not satisfied.

We then identified transcripts that contained a single, nonca-
nonical CLIP–cross-linked site for the transfected miRNA and 
retained those transcripts that did not additionally contain a 
canonical seed match (as defined above) anywhere in the 3′ UTR. 
We used in this search the 3′ UTRs of representative transcripts 
from ref. 8. This procedure gave us a conservative set of tran-
scripts on which the miRNA was likely to act on a noncanonical 
site. We sorted the noncanonical sites according to their target 
quality R(m|µ) with respect to the transfected miRNA µ, and we 
then divided the set into three subsets of equal size, corresponding 
to the top 33%, the middle 33% and the bottom 33% in terms of 
the target quality. To resolve issues of differences between genome 
and transcriptome annotations, we investigated the change in 
expression at the level of genes. That is, we mapped transcripts 
to corresponding genes in the Entrez database of NCBI. Finally, 
we compared the expression-level changes between genes con-
taining sites within each subset and genes whose representa-
tive transcripts did not contain a seed match in the 3′ UTR or 
did contain a seed match (irrespective of whether it was CLIP  

RNAduplex (we downloaded RNAhybrid from the server hosted by 
the University of Bielefeld (http://bibiserv.techfak.uni-bielefeld.de/) 
and applied it to the entire set of representative 3′ UTRs of human 
genes); and rna22 (ref. 19), a method based on statistical overrepre-
sentation of miRNA-complementary motifs (current genome-wide 
predictions of this method were obtained from the authors).

We further included lists of targets of miRNAs from the star-
Base database22 (http://starbase.sysu.edu.cn/), which intersects 
Ago2-CLIP sites with miRNA target predictions by TargetScan, 
PicTar, miRanda, PITA and rna22. StarBase does not provide 
a default sorting of predicted sites but allows users to manipu-
late stringency parameters. We downloaded target lists with the 
default settings of the database and also with the most inclusive 
settings that maximize the total number of predicted sites.

Because different methods may use different transcript col-
lections as a basis for their predictions, we decided to compare 
predictions at the level of Entrez genes. For ElMMo, PicTar, 
TargetScan, miRanda, PITA and rna22, we collected for each 
Entrez gene all transcripts associated with the gene and defined 
the target score as the highest score among all transcripts in the 
set.

For RNAhybrid and RNAduplex, we predicted miRNA- 
complementary sites transcriptome wide. For this purpose, we 
selected a representative 3′ UTR for each Entrez gene that had 
a RefSeq transcript in the 18 January 2011 release of the RefSeq 
database. We chose as the representative 3′ UTRs those that had 
the longest transcript among those that were represented in 
RefSeq, had an annotated 5′ UTR, 3′ UTR and CDS and were 
associated with the corresponding gene. We scanned each 3′ UTR  
with windows of 50 nucleotides, shifting by 25 nucleotides at 
a time, and predicted the minimum free energy of interaction 
between the miRNA and each window. We then defined the tran-
script score as the minimum free energy over all windows from 
the 3′ UTR of a given transcript. For MIRZA, the target score of 
a transcript from the representative set was defined as the sum 
of the logarithms of the target qualities of all sites occurring in 
the transcript.

Median fold changes. To test the accuracy of the target predic-
tions of each method, we used the data sets of miRNA transfec-
tion experiments as described in the section “miRNA transfection 
data for functional analysis of predicted sites.” For each transfec-
tion experiment, and each method, we sorted all predicted target 
genes by score and filtered out all genes for which no fold change 
data were available in the corresponding data set. We then deter-
mined, as a function of the number n of top predicted targets, 
the median log fold change lm(n) of these targets in response to 
miRNA transfection. Lower median fold changes thus indicate 
that a method predicts targets that are more strongly downregu-
lated upon transfection of the miRNA. For each of the five data 
sets, we calculated average median log fold changes <lm(n)> by 
averaging the functions lm(n) over the transfection experiments 
in individual data sets. We also calculated an average over all 38 
transfection experiments.

Estimating the number of functional targets. Besides calcu-
lating median log fold changes, we also determined—for each 
miRNA and each method—the fraction f(n) of the top n predicted 
targets that were downregulated as a function of the number n 
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From each of the four Ago2 data sets from ref. 8, and from the 
three mouse brain Ago2 HITS-CLIP data sets (libraries prepared 
from the 130-kDa band) in ref. 6, we extracted the 5,000 sites with 
the highest coverage by reads. We also extracted the 5,000 most 
enriched sites, relative to the expression of the corresponding 
mRNAs in an mRNA-seq sample that we prepared from HeLa 
cells, from the two samples from ref. 6 that were obtained after 
miR-124 transfection in HeLa cells. We applied the MIRZA model 
to each of these sets of putative Ago2 binding sites to determine 
the miRNAs that most likely guided the interaction with the 
site and the hybrid with the highest score, and we used this to 
determine the relative proportions of individual binding modes  
(for example, that with a bulge at the pivot position9) among  
these hybrids.

23. Gentleman, R.C. Genome Biol. 5, R80 (2004).
24. Wu, Z., Irizarry, R.A., Gentleman, R., Martinez-Murillo, F. & Spencer, F.  

J. Am. Stat. Assoc. 99, 909–917 (2004).

cross-linked) in the 3′ UTR. For each gene, we computed the 
average log fold change across replicate transfection experiments.

For the comparison of prediction accuracy of the different 
target prediction methods, we defined noncanonical targets as 
follows. For each miRNA, we scanned all 3′ UTRs of RefSeq tran-
scripts associated with each Entrez gene for a canonical match to 
the miRNA. All Entrez genes for which such a seed match was 
detected are considered canonical targets by default, i.e., irrespec-
tive of where in the 3′ UTR the various methods predicted sites 
or which of the RefSeq transcripts contained such a site. Thus, 
noncanonical target genes of a given miRNA are those for which 
the 3′ UTRs of associated RefSeq transcripts do not contain a 
canonical match to the seed sequence.

Representation of noncanonical binding modes among CLIP 
sites. To determine the prevalence of specific noncanonical  
binding ‘modes’ in CLIP data sets, we extracted sites as follows. 
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