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MiRNAs are post-transcriptional regulators that contribute to the establishment and maintenance of
gene expression patterns. Although their biogenesis and decay appear to be under complex control,
the implications of miRNA expression dynamics for the processes that they regulate are not well
understood. We derived a mathematical model of miRNA-mediated gene regulation, inferred its
parameters from experimental data sets, and found that the model describes well time-dependent
changes in mRNA, protein and ribosome density levels measured upon miRNA transfection and
induction. The inferred parameters indicate that the timescale of miRNA-dependent regulation is
slower than initially thought. Delays in miRNA loading into Argonaute proteins and the slow decay
of proteins relative to mRNAs can explain the typically small changes in protein levels observed
upon miRNA transfection. For miRNAs to regulate protein expression on the timescale of a day, as
miRNAs involved in cell-cycle regulation do, accelerated miRNA turnover is necessary.
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Introduction

The cellular abundance of proteins appears to be controlled to
a substantial extent at the level of translation (Schwanhäusser
et al, 2011). Among post-transcriptional regulators, miRNAs
are short, evolutionarily conserved, non-protein-coding RNAs
that modulate the rates of both protein translation and mRNA
decay (Bartel, 2009; Fabian et al, 2010; Huntzinger and
Izaurralde, 2011). MiRNAs guide Argonaute (Ago) proteins to
specific elements that are located mostly in the 30 untranslated
regions (UTRs) of mRNAs and are typically complementary to
the miRNAs’ ‘seed’ region (7–8 nucleotides at the 50 end)
(Bartel, 2009). They are involved in virtually every cellular
process, from early development (Wightman et al, 1993;
Kanellopoulou et al, 2005; Song et al, 2011) to organ function,
and their perturbed expression has been associated with
numerous human diseases, such as diabetes (Trajkovski et al,
2011), cancer (Lu et al, 2005) and viral infection (Pfeffer et al,
2004). Furthermore, miRNAs appear to be able to initiate, on
their own, the complex process of reprogramming somatic
cells into pluripotent stem cells (Anokye-Danso et al, 2011).

Evidence for context-specific modulation of both miRNA
biogenesis (Heo et al, 2009) and decay (Chatterjee and
Grosshans, 2009; Krol et al, 2010; Rissland et al, 2011) has started
to emerge. Yet, the implications of a flexible modulation of miRNA

expression dynamics for the dynamics of the controlled processes
remain largely unexplored. Rather, from a kinetic stand point,
miRNAs are generally viewed as fast regulators of gene
expression, in contrast to transcription factors, whose expression
additionally requires protein synthesis (Shimoni et al, 2007;
Hobert, 2008). Here, we use a variety of low- and high-throughput
data sets to uncover the kinetics of various steps in the miRNA-
dependent regulatory cascade. Contrary to the expectation that
miRNAs are fast regulators, we find that miRNAs may not be
acting as rapidly as commonly assumed due to two bottlenecks,
one at the level of miRNA loading into Ago and the other at the
level of protein decay. The derived quantitative model enables us
to predict the effect of manipulating miRNA expression on
mRNA, protein and ribosome density levels, to uncover these
effects from experimental data sets and to make predictions about
the dynamics of miRNA-dependent gene regulation in various
physiological scenarios.

Results

Inference of a kinetic model of miRNA-dependent
regulation

A stumbling block for a quantitative description of
miRNA-dependent gene regulation is that the parameters
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of miRNA expression dynamics and of miRNA–target interac-
tion are generally unknown. The fluorescence cross-correla-
tion spectroscopy experiments of Ohrt et al (2008) offer a
possible solution. This study measured the fraction of small-
interfering RNA (siRNA) in complex with Ago as well as the
fraction of Ago in complex with siRNAs, as a function of the
time after siRNA micro-injection into cells. Because the siRNA
and miRNA pathways share many components, these data
allow us to obtain initial estimates of the dynamics of Ago
loading, which we can then use to predict the dynamics of
miRNA-induced changes in miRNA targets.

Figure 1A illustrates the structure of the Ago-loading model
that we constructed. At time t¼ 0, X0 siRNAs are micro-
injected into the cytoplasm from where they either decay at a
rate d or associate with free Ago at a rate g¼ b f0, with b being
the rate of binding and f0 the fraction of free Argonaute
proteins. Ago-complexed siRNAs dissociate at a rate u. With
reasonable assumptions supported by experimental evidence
(Khan et al, 2009), namely that the fraction of free Ago f0 is
small and that siRNAs load into Ago by competing out
endogenous miRNAs, the fraction of Ago proteins loaded with
the injected siRNA can be described by a bi-exponential
function. This form facilitates the modeling of mRNA and
protein dynamics of miRNA targets, as will be described
shortly. We obtained maximum-likelihood estimates and
confidence intervals on the model parameters g, d, u, X0 by
Markov Chain Monte Carlo (Supplementary Figure S1) and
found a good agreement between the data and the model
(Figure 1B). Therefore, Ago loading upon small RNA micro-
injection can be well approximated by a bi-exponential
function.

Does this model describe well the dynamics of Ago loading
upon miRNA transfection? The above model predicts that the
peak in Ago loading would be about 10 h after the delivery of
the small RNA (Figure 1B). However, the peak in mRNA
repression in miRNA transfection experiments, which should
occur at the peak of Ago loading with the miRNA, appears to be
considerably delayed. For example, in the experiments of
Grimson et al (2007) target mRNAs are typically more

repressed at 24 h than at 12 h after miRNA transfection
(Supplementary Figure S2A). This is likely due to a delayed
delivery of transfected miRNAs to the Ago proteins (Broderick
and Zamore, 2011; Stalder et al, 2013) compared with the
situation in which the small RNAs were directly micro-injected
into cells. To investigate the dynamics of miRNA loading into
Ago under transfection conditions, we therefore used the fine-
grained time series of mRNA expression of Wang and Wang
(2006) who transfected miR-124 in HepG2 cells. However,
because up to this point our model only describes the
dynamics of Ago loading with a small RNA, we first need to
derive the consequences of Ago-loading dynamics for the
mRNA and protein level of the small RNA targets.

The abundance of transcripts and proteins associated
with individual genes is frequently described in terms of the
rates of mRNA transcription, decay and translation and the
rate of protein decay (e.g., Hargrove and Schmidt, 1989;
Schwanhäusser et al, 2011; and Khanin and Higham, 2009). A
large body of evidence indicates that miRNAs modulate both
the decay and translation rates of mRNAs. How these rates
respond to changes in miRNA expression is not known.
However, because the studies of Djuranovic et al (2012) and
Béthune et al (2012) showed that once loaded in Ago, miRNAs
find their targets relatively fast, we can assume that the relative
changes in mRNA decay and translation are proportional to the
fraction of miRNA-loaded Ago. The resulting model, describ-
ing the mRNA and protein abundance of a given miRNA target,
is parametrized by two proportionality factors d and l that
relate the fraction of loaded Ago to the relative increase in
mRNA decay and decrease in translation (see Materials and
methods). l41 indicates that miRNAs predominantly affect
the translation of the message, while l between 0 and 1
corresponds to the case where miRNAs impact mostly the
mRNA decay.

We first fitted the mRNA expression dynamics in response to
miR-124 transfection measured by Wang and Wang (2006). To
do so, we fixed the Ago-loading parameters g, d, u to the values
inferred from the fluorescence cross-correlation spectroscopy
measurements of Ohrt et al (2008) (Figure 2A, in green). As a
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Figure 1 The amount of siRNA-loaded Ago following siRNA micro-injection can be modeled by a bi-exponential function. (A) Cartoon illustrating the model
parameters: at time t¼ 0, X0 siRNAs are injected into the cell, after which the siRNAs X either decay with rate d or load into a free Ago f0F with rate b to form siRNA-
loaded Ago complexes A. Small RNAs dissociate from Ago at rate u. (B) Measured (dots) and fitted (lines) fractions of complexed Ago and complexed siRNAs from the
data set of Ohrt et al (2008). Error bars represent the 95% confidence interval on the mean measured fraction of Ago and siRNA in complex. Maximum-likelihood
parameter estimates also appear in the figure. g¼ bf0 is the Ago–siRNA association rate b normalized to the fraction of free Ago f0. See also Supplementary Figure S1.
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result, the fraction of loaded Ago can be described by a bi-
exponential function of time. One can show that mRNA
expression dynamics are driven by a single free parameter X0d:
the product of the initial concentration of the small RNA X0

and the maximum change in mRNA decay rate that can be
induced by the small RNA d. Alternatively, to account for the
presumed delays in Ago loading upon miRNA transfection, we
modified the Ago-loading model to include an additional
compartment (presumably the endosomes) in which V0

miRNAs are loaded at the time of transfection (Figure 2A, in
red). From this compartment, miRNAs are either degraded or
translocate to the cytoplasm where they can associate with
Ago. These assumptions lead to a tri-exponential Ago-loading
function. In this alternative model, describing the miRNA-
induced changes in mRNA abundance requires two free
parameters: ~dþ r, the experiment-specific rate with which
miRNAs are cleared from endosomes through degradation or
transfer to the cytoplasm, and rV0d, the gene-specific influence
of the transfected miRNAs on mRNA degradation.

We compared the goodness of fit of both models by fitting
their free parameters—X0d for the bi-exponential model, or

~dþ r and rV0d for the tri-exponential model i—to 1098 genes
that had a miR-124 seed match in the 30 UTR and were
repressed on average 4, 8, 16, 24 and 32 h post transfection.
This represents a total of 5490 data points. With a maximum
log-likelihood of 877.3, the tri-exponential Ago-loading model
fitted better the mRNA profiling data than the bi-exponential
model (log-likelihood of � 2994.6; Figure 2B; Supplementary
Figure S2B). Replicate experiments would allow us to estimate
an upper bound on the goodness of fit that can in principle be
achieved, but unfortunately, the time series experiment did not
include replicates. Nonetheless, we used a data set of six
replicate experiments in which miR-124 was transfected into
human embryonic kidney 293 (HEK293) cells and mRNA
expression was subsequently profiled by microarrays
(Karginov et al, 2007) to estimate this upper bound. The
average standard deviation on the log2 mRNA fold change was
s¼ 0.26 (Supplementary Figure S2C), corresponding to a 20%
uncertainty on the fold change. At this cutoff, the tri-
exponential model fitted 83.8% of the genes (Figure 2C), and
the prediction error was uniform across time points
(Figure 2D; Supplementary Figure S2D–F). Therefore,
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Figure 2 Changes in mRNA levels in the miR-124 transfection time course of Wang and Wang (2006) can be modeled assuming a tri-exponential Ago-loading
function. (A) Cartoon illustrating two models of miRNA transfection experiments and their parameters. Free, fitted parameters appear in black, fixed parameters from
Figure 1 in gray. The bi-exponential model (in green) is the same as in Figure 1A. Also shown is a tri-exponential model of Ago loading (in red), which is identical to the bi-
exponential model, except for the addition of an extra compartment (V) in which V0 miRNAs are loaded at time t¼ 0, and two additional rates: rate of miRNA decay in this
compartment (~d) and rate of transfer to the Ago-accessible environment (r). (B) Log-likelihood profile of the clearance parameter ~dþ r given the mRNA profiling time-
course data. The log-likelihood of the tri-exponential model (red line) is compared with that of the bi-exponential model (green line). (C) Cumulative distribution of the per-
gene relative error between the model and the time-course data. The x-axis represents the per-gene relative error between the model prediction and the measurements.
For any chosen cutoff on the relative error, the fraction of genes whose regulation following miRNA transfection could be predicted at the chosen error cutoff or less can
be read on the y -axis. The dotted line marks a 20% error on the fold change typically observed in miRNA transfection experiments. (D) Boxplots of the model residual
on log2 fold changes for genes that fit the measured mRNA fold changes with less than a 20% error. Boxes span the interquartal range and whiskers extending up to
1.5 times the interquartal range. See also Supplementary Figure S2.
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accounting for delays in Ago loading is necessary to model
changes in gene expression following miRNA transfection.

Validation of the derived models of mRNA and
protein abundance changes in response to miRNA
transfection and induction

To test whether the models derived above can describe the
change in abundances of both mRNAs and proteins following
miRNA perturbation, we selected a ‘prototypical’ miRNA,
miR-199a, that is not normally expressed in HEK293 cells and
established a cell line in which the expression of miR-199a is
inducible with doxycylin from a pRTS-1 episomal vector
(Bornkamm et al, 2005). We further cloned the 30 UTR of the
kinectin (KTN1) gene, containing a miR-199a-3p binding site,
downstream of the stop codon of the renilla luciferase in a
psiCHECK-2 vector and stably integrated this construct in the
genome of cells containing the miR-199 expression vector. We
then investigated the response of the KTN1 gene at both the
mRNA and protein level upon induction of miR-199a or
transfection of miR-199-3p mimic. For Ago loading, we used
the tri-exponential model for the transfection experiment,
while for miRNA induction experiment, we changed the one-
time micro-injection represented in Figure 1A to add constant
miRNA synthesis into the Ago-accessible compartment X. The
measured and predicted mRNA and protein-level dynamics for
both miRNA transfection and induction are shown in Figure 3
and Supplementary Figure S3.

From the perspective of the measured changes, we found
that the transfection experiment had higher variability,
presumably because the transfection efficiency varied to some
extent between the replicate experiments. The changes in
mRNA expression, measured by qPCR, also showed higher
variability compared with changes in protein expression,
which were estimated based on the luciferase activity. None-
theless, the models give a reasonable fit to the mean observed
changes. Furthermore, the protein-level changes, which are

the final readout of our models’ dynamics and whose
prediction depends on all of the assumptions that our models
make, are remarkably well described by the models. These
results indicate that our models predict well mRNA and
protein-level changes in response to changes in miRNA
expression. Furthermore, as data from other groups also
suggest (Karginov et al, 2007), controlling variability in
transfection experiments is difficult, and miRNA target
identification could therefore be more accurate in experiments
in which the miRNA is induced instead of transfected.

As additional validation of our model, we further tested its
ability to explain changes in mRNA abundance and translation
efficiency (estimated through Ribosome Protected Fragment
(RPF) sequencing) measured at two time points (12 and 32 h)
after miR-155 and miR-1 transfection by Guo et al (2010).
Indeed, we found that the maximum-likelihood estimates of
both ~dþ r and rV0d were in the range of those previously
observed in Wang’s miR-124 and our miR-199 transfection
experiments (Supplementary Figure S4A). The proportion of
genes whose mRNA-level and RPF dynamics was fitted at the
expected accuracy was 67.5% and 48.3% in the miR-155 and
miR-1 transfections, respectively (Figure 4A). These numbers
are lower than those we obtained for the Wang and Wang
(2006) data, which could be due to the lower reproducibility of
translation efficiency measurements by RPF—30% variability
on the log2 fold change according to Ingolia et al (2009)—
compared with mRNA profiling. Thus, our models that link the
dynamics of the miRNA to the dynamics of its target at the
mRNA and protein level explain well kinetic data from reporter
systems as well as from high-throughput measurements.

Implications of Ago-loading kinetics and protein
turnover for miRNA-dependent gene regulation

To explore the implications of our models for miRNA-
dependent gene regulation, we investigated currently open
questions in the field. One intensely debated aspect is the
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extent to which miRNAs affect the decay as opposed to the
translation rate of target mRNAs. To answer this question, a
few studies obtained direct, high-throughput measurements of
mRNA as well as protein-level changes upon miRNA transfec-
tion (Baek et al, 2008; Selbach et al, 2008). The general
conclusion was that miRNAs predominantly affect the mRNA
decay rate. If this were the case, then one would expect a strong
correlation between the changes in levels of mRNA and in
protein of individual genes, which is not what one typically
observes. Rather, changes in protein abundance appear
uncoupled from changes in mRNA abundance and miRNA
targets typically change less at the protein compared with the
mRNA level (see Section 3.4 of the Supplementary Material).
By measuring protein decay rates by Selected Reaction
Monitoring, we further found that fast-decaying proteins were
preferentially detected as miRNA targets in these experiments
(Section 3.4 of the Supplementary Material). Additionally, in
the one experiment in which mRNA and protein-level changes
were measured a week after the expression of a miRNA was
abrogated yielded a much stronger correlation. All of these
observations suggested that the mRNA and protein-level
changes were measured far from steady state, and we re-
analyzed these data in the framework of our kinetic model.

The three Stable Isotope Labeling by Amino acids in Cell
culture (SILAC) experiments of Baek et al (2008) fitted the
model very well. The dynamics of 480% of genes with a seed
match to the transfected miRNA and downregulated 24 h post
transfection was perfectly described by the model (Figure 4B;
Supplementary Figure S4B). This included genes for which the
mRNA was more strongly regulated than the protein
(Supplementary Figure S4D). In addition, the values of the
fitted parameters were consistent with the values obtained
from the other data sets (Supplementary Figure S4). Applica-
tion of the model to the pulsed SILAC (pSILAC) data from the
five transfection experiments of Selbach et al (2008) revealed a
similar picture, with 50–90% of downregulated mRNAs with
seed match to the transfected miRNA fitting the model
(Figure 4C; Supplementary Figure S4C), including genes for
which protein levels were less affected than mRNA levels

(Supplementary Figure S4E). Thus, our model explains to a
large extent the measured effects of miRNA on mRNAs
and protein levels. Dissecting the relative contribution of
translational repression and mRNA decay to the miRNA-
mediated repression of individual targets (Supplementary
Figure S4A–C) we found that on averageE25% of the putative
targets on a miRNA undergo predominantly translation
repression. Thus, our analysis supports the previous asser-
tions that miRNAs have a stronger impact on mRNA decay
compared with translation (Baek et al, 2008, Guo et al, 2010). It
further indicates that the discrepancy between the measured
mRNA and protein-level responses of individual miRNA
targets was due to the expression dynamics of the transfected
miRNAs and to the confounding effect of protein decay rates
on protein levels.

The second question that we sought to address relates to the
observation that the expression of some miRNAs changes
rapidly as a function of cellular state. In particular, Krol et al
(2010) showed that the expression of miRNAs from the miR-
183/96/182 cluster (but not of other miRNAs) changes rapidly
in response to illumination and that these changes are
important for the regulation of gene expression in the retina.
Circadian changes in miRNA expression levels in the liver have
also been described (Gatfield et al, 2009) and, examining the
relative abundance of miRNAs in Ago2-immunoprecipitation
samples prepared from HeLa cells in M phase and unsynchro-
nized cells (Kishore et al, 2013) we also found that miRNAs of
the let-7 family are two-fold upregulated during the M phase
while miR-21 is 66% downregulated (Supplementary
Table S1). In all of these circumstances the targets of the
miRNAs whose expression is modulated should respond
rapidly, on the timescale of about a day. We therefore asked
under what conditions would the protein-level dynamics of
miRNA targets reflect the rapid dynamics of the miRNA itself.

We used the model for miRNA induction experiments that
was introduced in the previous section to compute the
amplitude in the oscillation of a target protein level as a
function of the protein decay rate and miRNA kinetics. To
emulate the qPCR time series of Krol et al (2010), we explored a
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regulatory scenario in which miRNA synthesis switched
between two regimes during a 24-h cycle (Supplementary
Figure S5A): the first 12 h of low miRNA expression (synthesis
rate: half of its maximum level) and the next 12 h of high
expression (maximal synthesis rate). Although it does not
come as a surprise that proteins with median half-life (48 h;
Schwanhäusser et al, 2011) undergo oscillations of o1% in
amplitude (Figure 5A), increasing the protein turnover rate by
two orders of magnitudes still only leads to a modest increase
in the amplitude of protein oscillations (o10%; Figure 5D).
Responsible for these small changes are the slow kinetics of
Ago loading and miRNA decay. It is only when fast protein
turnover is combined with fast miRNA kinetics (rates of Ago
association, dissociation, and of miRNA decay) that substan-
tial oscillations in protein levels (60% of the baseline level
assuming no translation repression and up to 2.5-fold with
translation repression; Figure 5B) ensue.

Another highly relevant regulatory scenario is when the
synthesis of a miRNA is abrogated at the transition between
cell types or states. For example, rapid synthesis and
subsequent clearance of the dre-miR-430 miRNA is important
for proper zebrafish development (Chen et al, 2005; Giraldez
et al, 2005). We thus investigated how fast target proteins are
expected to change in response to a sudden block in miRNA
synthesis (Supplementary Figure S5B). We again used the

model introduced in the previous section for miRNA induction
experiments and computed the time necessary for proteins to
reach 90% of their steady-state level in the absence of the
miRNA—the recovery time—as a function of the protein decay
rate and of the miRNA kinetics. As expected, simulations
revealed that the main factor limiting the recovery time
is the protein decay rate (Figure 5C and D). However, they
additionally allowed us to estimate the timescale of the protein
response. Namely, proteins with a median half-life of 48 h
(Schwanhäusser et al, 2011) would have a recovery times
larger than 140 h (6 days). This implies that miRNAs are a slow
means of regulating the levels of typical proteins. It may thus
be expected that miRNAs preferentially target proteins with
rapid turnover. We tested this hypothesis by comparing the
decay rates of top compared with weakest predicted miRNA
targets (highest and lowest, respectively, prediction scores
according to the ElMMo algorithm (Gaidatzis et al, 2007)
that estimates the strength of evolutionary selection of the
miRNA-complementary sites) measured by Cambridge et al
(2011). Indeed, we found that the highest scoring targets had
significantly higher protein decay rates than low-scoring
targets. This indicates that miRNAs preferentially target
fast-decaying proteins, on whose expression they have
a rapid regulatory impact (Supplementary Figure S5C).
Alternatively, mechanisms such as increased protein turnover

Figure 5 Parameter ranges that are compatible with a specific dynamic of protein targets. (A) Changes in protein levels induced by a miRNA whose
synthesis switches between half-induction and full induction in 24 h cycles. Simulations were performed assuming the default kinetic parameter (48 h protein half-life,
miRNA loading and decay rates estimated from biophysics data, red line) or faster kinetics (30 min protein half-life, 14-fold speed-up in miRNA loading and decay,
black line). (B) Amplitude (fold change) of the oscillations in protein abundance as a function of protein decay and miRNA kinetics. The color bars correspond to the
case where miRNA only affect mRNA decay (l¼ 0) or equally regulate mRNA decay and translation (l¼ 1). (C) Changes in protein levels following a sudden
drop in miRNA synthesis given default kinetic parameter (48 h protein half-life, miRNA loading and decay rates from biophysics data, red line) or faster kinetics
(5 h protein half-life, three-fold speed-up in miRNA loading and decay, black line). (D) Protein recovery time as a function of protein decay and miRNA kinetics.
The color bars correspond to the case where miRNA only affect mRNA decay (l¼ 0) or equally regulate mRNA decay and translation (l¼ 1). See also Supplementary
Figure S5.

Bottlenecks in miRNA-mediated gene regulation
J Hausser et al

6 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited



or cell division would need to be recruited to diminish the
recovery time of miRNA targets. Similar considerations apply
to the situation when a miRNA is strongly induced to repress
its targets.

Discussion

By contrast to transcription factors, miRNAs are often viewed
as rapid means of regulating gene expression. Although
synthesizing a miRNA likely requires less time than synthesiz-
ing a protein, miRNAs only function as part of complexes with
Ago proteins. Some studies (Khan et al, 2009) already
suggested that Ago levels within cells are limiting, implying
that for a miRNA to exert its function, it has to displace other
miRNAs from Ago. The models we introduced here abstract
much of the molecular complexity of the miRNA pathway, but
their parameters can be fitted from presently available data
sets. As a result, it remains challenging to pinpoint the precise
steps (binding the double-stranded miRNA to Ago, expelling
the passenger/miR* strand, etc.) that are most responsible for
the inferred bottlenecks. Nevertheless, our analysis indicates
that it is the overall Ago-loading process that determines the
timescale of miRNA-dependent gene regulation. At an esti-
mated Ago-dissociation rate of u¼ 0.116 h� 1, the half-life of
Ago residency is B6 h, which sets a lower bound on the time
that miRNAs need to regulate their target.

Re-analysis of data from experiments in which both mRNA
and protein levels were measured after miRNA transfection
shows that mRNAs underwent more pronounced changes than
the proteins. The underlying explanation appears to be
different in different experimental settings. In the SILAC
experiments, it is the slow rate of protein decay that does not
allow the full extent of protein downregulation to be reached
before the miRNA is degraded. In contrast, in the pSILAC
experiments the change of labeling medium, done 8 h post
transfection, occurred before the full Ago loading with the
transfected miRNA was reached (20–30 h post transfection).
Thus, the proteins were labeled before the miRNA fully exerted
its inhibitory effects and the confounding effect of protein
decay rate was only partially circumvented. This suggests that
changing the labeling medium at a later time point would
better capture the effect of miRNAs of protein synthesis
by pSILAC.

Simulating changes in mRNA and protein levels for two
biological realistic scenarios, namely circadian oscillation of
miRNA expression and a sudden change in miRNA synthesis,
we found that protein decay rates critically limit the efficiency
of miRNA regulation. Importantly, we found that oscillations
of large amplitude in protein levels in response to an oscillating
miRNA are predicted to be achievable only when the miRNA
undergoes fast turnover and when the miRNA–Ago loading
kinetics is fast, much faster than micro-injected siRNAs were
found to load and unload from Ago. This is not a reflection of
differences between siRNA and miRNA dynamics, because the
siRNA–Ago loading model allows a very good fit to mRNA and
protein-level data from a variety of experiments in which the
miRNA expression was manipulated. Rather, our results
suggest that active mechanisms increase miRNA turnover in
specific in vivo conditions. The rate of Ago loading with a

specific miRNA can be increased by activating the miRNA’s
transcription. Exonucleases such as Xrn2 (Chatterjee and
Grosshans, 2009), RRP41 (Bail et al, 2010), PNPase(old-35)
(Das et al, 2010) and Xrn1 (Chatterjee et al, 2011), which have
been implicated in active miRNA degradation as well as
destabilization by a complementary miRNA (Chen et al, 2011;
De et al, 2013) can destabilize the miRNA, thereby critically
regulating miRNA residency in Ago.

Large oscillations in protein levels in response to an
oscillating miRNA require a fast protein turnover rate. This
situation is probably exemplified by the miR-16 family of
miRNAs that regulates the cell cycle (Linsley et al, 2007),
directly targeting Cyclin D3, Cyclin E1 (Liu et al, 2008) and
likely also Cyclin D2, the latter being one of the top predicted
ElMMo (Gaidatzis et al, 2007) targets of these miRNAs with
three conserved binding sites. Indeed, cell-cycle proteins do
undergo fast decay (Schwanhäusser et al, 2011), and these
cyclins have been shown to undergo proteolysis at different
points of the cell cycle (Russell et al, 1999; Strohmaier et al,
2001; Kida et al, 2007). Thus, miRNAs should be able to
meaningfully modulate the expression of these proteins if they
can rapidly load and unload from the Ago protein and decay. A
natural timescale for the decay of proteins is set by cell
division. In cells that undergo substantial clonal expansion,
the miRNA-induced repression can take hold on the timescale
of protein dilution by cell division. In non-dividing retinal
neurons (Krol et al, 2010) however, miRNA-based regulation of
protein levels would be slow unless the miRNA targets have a
high turnover rate.

In conclusion, we constructed a unifying mathematical
framework of the kinetics of miRNA-mediated gene regulation
starting with Ago loading, going through miRNA-dependent
change in mRNA abundance, translation efficiency and
protein abundance. We inferred the model parameters from
various types of experiments and showed that it accurately
describes regulatory dynamics in miRNA micro-injection,
induction and transfection experiments. This framework
will help in further designing miRNA target identification
experiments and in characterizing miRNA function away
from the steady state such as in development, cell cycle and
circadian rhythms.

Materials and methods

Modeling the kinetics of Ago loading

We briefly outline the models describing Ago loading with small RNAs
that we use in our study. Full derivations can be found in Section 3.2 of
the Supplementary Material.

Modeling Ago loading following siRNA micro-injection
In a micro-injection experiment, X0 siRNAs enter the cell at time
t¼ 0 h. A fraction f0 of the R Ago molecules is not bound to endogenous
miRNAs (Khan et al, 2009) and therefore available for binding to
siRNAs. If we assume that the fraction of free Ago f0 remains fairly
constant during the experiment—that is, if siRNAs load mostly by
displacing miRNAs from Ago—and that the amount of free endogen-
ous miRNAs is not significantly affected by the small RNAs micro-
injection, that siRNAs only decay if they are not bound to Ago and that
Ago–siRNA association and dissociation rates happen on a fast
timescale compared with processes such as synthesis and degradation,
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then we can write the dynamics of loaded Ago A and free siRNAs X as

dA
dt ¼ bf0RX�uA
dX
dt ¼ �dX� bf0RXþuA

�
ð1Þ

where free siRNAs X decay at rate d, associate with a free Ago at rate b
and unload from a loaded Ago A at rate u. The equation for A specifies
that the production rate of loaded Ago depends on the amount of free
X, on the amount of free Ago f0R and on the binding rate b. Loaded Ago
A is then lost by dissociation that happens at rate u. In the equation
that defines the dynamics of free siRNA X, the first term accounts for
first-order decay (at rate d), the second for the association with a free
Ago and the last for the release from a loaded Ago. For convenience
when fitting the biophysical data of Ohrt et al (2008), we can rewrite
these equations in terms of the fraction of loaded Ago a ¼ A

R and
substitute g¼bf0 which gives

da
dt ¼ gX�ua
dX
dt ¼ �ðdþ gRÞXþuRa

�
ð2Þ

The analytical solution for the Ago-loading function a(t) can be shown
to be bi-exponential where each exponential accounts for a different
phase of the Ago-loading dynamics. The initial phase corresponds to
the displacement of endogenous miRNAs by the siRNAs, and the
second phase corresponds to the slow clearance of siRNAs from cells.

Modeling the loading of Ago with miRNAs upon miRNA
transfection
In miRNA transfection experiments, miRNAs are delivered with
liposomes as vectors as opposed to being directly injected into cells.
This likely introduces an additional delay as miRNAs need to traffic
from liposomes to endosomes and cytoplasm (Stalder et al, 2013). To
account for that delay, we introduce an additional compartment V to
our model. V0 miRNAs are delivered to Vat time t¼ 0 h, and from there
they can either decay with rate ~d or transfer to the cytoplasm X with
rate r. The ordinary differential equation (ODE) system describing
these dynamics can be written as

dV
dt ¼ � ~dþ r

� �
V

dX
dt ¼ rV�ðdþ gRÞXþuRa
da
dt ¼ gX�ua

8><
>: ð3Þ

The analytical solution for the Ago-loading function is tri-exponential,

aðtÞ ¼ ~k1e�b1t þ ~k2e�b2t �ð~k1þ ~k2Þe� ð
~dþ rÞt

whose parameters ~k1; ~k2; b1;b2 can be computed from the biophysical
parameters illustrated in Figure 2A (see below).

Modeling Ago loading upon miRNA induction.
When the miRNA is induced (by doxycyclin in the case of our
experiment), there is no need to account for the endosomal
compartment. We therefore start from Equation (2) and slightly alter
the model by assuming that miRNA synthesis c(t) is inactive before 0 h
and follows 0th order kinetics upon doxycyclin induction, that is

dX
dt ¼ cðtÞ� ðdþ gRÞXþuRa
da
dt ¼ gX�ua

�
ð4Þ

with

cðtÞ ¼ 0 if to0
X0d if t � 0

�

The fraction of loaded Ago a(t) is then coupled to changes in mRNA
decay and translation as will be described below (Equation 8).

Modeling miRNA-induced changes in mRNA and
protein abundance

We modeled mRNA and protein dynamics using an ODE model along the
lines of those previously introduced by Hargrove and Schmidt (1989)

and Khanin and Higham (2009)

dm
dt ¼ c� d0 þDdðtÞð Þm
dp
dt ¼ l0 þDlðtÞð Þm� sp

(
ð5Þ

where m is the mRNA abundance, p the protein abundance, c the
transcription rate, d0 and l0 the mRNA decay and translation rates in
the absence of the miRNA, s the protein decay rate, and Dd(t) andDl(t)
represent the time-dependent changes in mRNA decay and translation
rates induced by the miRNA.

Assuming that mRNA and protein abundances are at steady state
before miRNA transfection, that is, mð0Þ ¼ c

d0
and pð0Þ ¼ c

d0

l0
s ,

Equation (5) can be rewritten in terms of the fold change in mRNA
and protein abundances fm and fp, that do not depend on the
transcription rate c:

dfm
dt ¼ d0 1� 1þ DdðtÞ

d0

� �
fm

h i
dfp
dt ¼ s 1þ DlðtÞ

l0

� �
fm� fp

h i
8<
: ð6Þ

If after transfection the miRNAwas to persist at a constant level until a
new steady state was reached, then the change in protein abundance
relative to the initial state would be given by fp ¼ 1þ DlðtÞ

l0

� �
fm, that is

proportional to the change in mRNA abundance, the proportionality
factor being the change in translation rate of the mRNA. The timing
with which the protein abundance changes and how closely it follows
the mRNA abundance will depend on the decay rate of the protein, s;
fast-decaying proteins will reach the steady state faster in response to
the miRNA compared with slow-decaying proteins.

Of the two approaches to measure protein abundance changes upon
miRNA transfection, SILAC (Baek et al, 2008) measurements can be
described directly by Equation (6). pSILAC (Selbach et al, 2008), on the
other hand, measures newly synthesized proteins. That is, at tc¼ 8 h
after transfection, the growth medium was changed and the amount of
protein synthesized between 8 and 32 h after either miRNA or mock
transfection was estimated. The difference between the amount of
protein produced in miRNA- and mock-transfected cells between 8 and
32 h is given by

dfp
dt
¼ s

1� e� sðt� tcÞ
1þ DlðtÞ

l0

� �
fm� fp

� �
ð7Þ

Compared with Equation (6), the magnitude of measured changes in
protein abundance no longer depends on the protein decay rate s, but
rather on the factor s

1� e� sðt� tc Þ, which is larger than s, particularly
shortly after the medium change (t¼ tc). Consequently, pSILAC
amplifies changes in protein levels by a factor s

1� e� sðt� tc Þ that decreases
with time. In addition, at constant time t, the strongest amplification
occurs when 1� e� sðt� tcÞ is small, that is for stable proteins (small s).
The change of a stable protein is therefore amplified more than
that of an unstable protein, and therefore the regulatory impact
of a miRNA will be revealed whether the protein is stable or
unstable (Supplementary Figure S5D). As a consequence, for a miRNA
target to appear as a ‘non-responder’ in a pSILAC experiment, its decay
rate has to be extremely small, which we could verify experimentally
(see Supplementary Material). The similarity in the fold-change
trajectories of fast- and slow-decaying miRNA targets is of course a
main rationale of the pSILAC approach (Schwanhäusser et al, 2009)
which by reducing the confounding effect of protein decay rates leads
to higher correlation between mRNA and protein fold changes
(average of r¼ 0.27 and r¼ 0.41 for all genes and genes with seed
match, respectively, compared to an average of r¼ 0.18, for both
categories of genes in SILAC, see Supplementary Table S2).

Assuming that the relative increase in mRNA decay and the decrease
in translation is proportional to the fraction of Ago molecules loaded
with the miRNA a(t) yields

d0þDdðtÞ
d0

¼ 1þ daðtÞ ¼ 1þ ~aðtÞ ð8Þ

l0
l0þDlðtÞ ¼ 1þ ldaðtÞ ¼ 1þ l~aðtÞ: ð9Þ

where d and l are proportionality factors. Because miRNAs increase
mRNA decay and repress translation, both l and d should be positive.
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~aðtÞ :¼ daðtÞ represents the relative change in the mRNA decay rate as
a function of time.

Combining Equation (8), that relates the amount of miRNA-loaded
Ago to changes in the rate of mRNA decay with Equation (6), that
describes changes in mRNA level, we obtain a relationship between the
change in mRNA level fm and the time-dependent change in the mRNA
decay rate ~aðtÞ,

dfm
dt
¼ d0 1� 1þ ~aðtÞð Þfm½ �: ð10Þ

Friedel et al (2009); Schwanhäusser et al (2009), measured mRNA
decay rates in high-throughput. Although we can use the per-gene
measurements of mRNA decay rates from these studies, the data reveal
a fairly tight distribution around a median of 0.12/h (5.8 h half-life).
For simplicity, we set the mRNA decay rate d0 to 0.12/h in the above
relation to analyze the mRNA response to miRNA transfection.

Similarly, by substituting Equations (8) and (9), that relate the
amount of miRNA-loaded Ago to changes in the rates of mRNA decay
and translation, into Equation (6) which describes changes in protein
levels, we obtain

dfp
dt
¼ s

fm
1þ l~aðtÞ � fp

� �
ð11Þ

which describes the change in protein level that would be measured as
a function of time in an SILAC experiment. A similar equation can be
derived for pSILAC measurements by substituting Equation (8) into
Equation (7) to yield

dfp
dt
¼ s

1� e� sðt� tcÞ
fm

1þ l~aðtÞ � fp

� �
: ð12Þ

Because the protein decay rates have a much wider distribution than
mRNA decay rates, in both models we used the measured (in HeLa
cells) decay rates s of individual proteins Cambridge et al (2011) rather
than a median decay rate.

Changes in mRNA and protein abundance fm are driven by the
relative change in mRNA decay ~aðtÞwhich depends on how the miRNA
is delivered. In the case of a transfection experiment, one can solve
Equation (3) to show that ~aðtÞ takes the form

~aðtÞ ¼ ~k1e�b1t þ ~k2e�b2 t �ð~k1þ ~k2Þe�
~dþ rð Þt ð13Þ

with

b1;2 ¼ dþ gRþu�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ gRþuð Þ2 � 4ud

p
2

~k1 ¼ b1 þdþ gR
uR

drV0

b2 �b1

b2 þdþ gR
b1 þ ~dþ r

~k2 ¼ � b2 þdþ gR
uR

drV0

b2 �b1

b1 þdþ gR
b2 þ ~dþ r

8>><
>>:

The parameters d, g, R, u specify the kinetics of Ago loading and can be
fitted from the experiments of Ohrt et al (2008) (see below). As a result,
mRNA dynamics following miRNA transfection are determined by two
free parameters, drV0 and ~dþ r. Modeling changes in protein
abundance requires an additional parameter l.

In the case of an induction experiment, solving Equation (4) shows
that the function ~aðtÞ takes the form of bi-exponential

~aðtÞ ¼ X0d
g
u

1� b2

b2 �b1

e�b1 t þ b1

b2� b1

e� b2t

� �
ð14Þ

with

b1;2 ¼
dþ gRþu �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ gRþuÞ2 � 4ud

q
2

:

There too, we use the values of the Ago-loading parameters d, g, R, u
inferred from the experiments of Ohrt et al (2008) (see below). From
Equation (14), we see that mRNA changes upon miRNA induction
fm(t) are driven by one free parameter X0d. As in the transfection case,
modeling protein dynamics fp(t) require an additional parameter l,
which accounts for the effect of miRNAs on translation relative to
mRNA decay.

Measuring changes in target protein and mRNA
abundance upon miR-199 transfection and
induction by luciferase assays and qPCR

Establishing a cell line stably expressing a miRNA
target as well as inducibly expressing the cognate
miRNA
We generated a stable HEK293Tcell line that simultaneously expresses
hsa-miR-199a-3p (miRBase accession MIMAT0000232) and its target
30UTR (Kinectin 1, KTN1, RefSeqID NM_004986). KTN1 was chosen
among the hsa-miR-199a-3p targets predicted by ElMMo (Gaidatzis
et al, 2007) that had at least one binding site with high probability of
being under selective pressure (P40.7) and a 30 UTR shorter than 1500
nts so that it could be cloned efficiently. The approach we took is
illustrated in Supplementary Figure S6. We PCR amplified the primary
hsa-miR-199a-3p and the target KTN1 30 UTR and cloned them into
pGEM-T Easy vector (Promega). The hsa-miR-199a-3p insert was
sequenced and subsequently cloned into an inducible pRTS-1 vector
(Bornkamm et al, 2005), replacing the luciferase gene at SfiI restriction
sites. We then transfected HEK293Tcells with the miR-199a-3p-pRTS-1
plasmid and selected colonies after 2 weeks of culture in the presence
of hygromycin B (Calbiochem, 100 mg/ml). Selected colonies were
subsequently propagated in the presence of hygromycin B.

The cell line was tested for hsa-miR-199a-3p expression after
the addition of doxycycline (1mg/ml) with northern blotting
(Supplementary Figure S7). The small RNA Northern was performed
as previously described (Pall and Hamilton, 2008), with a minor
change: we used the conventional TBE buffer instead of an MOPS-
NaOH buffer.

The KTN1 30 UTR insert from the pGEM-T Easy vector was
sequenced and subsequently cloned downstream of the open reading
frame of renilla luciferase in a psi-CHECK2 vector (Promega). The miR-
199a-3p-pRTS-1 cell line was then used for co-transfection of KTN1-
psiCHECK-2 and pPUR (Clontech) plasmids in a 3:1 ratio. Stable
colonies were isolated after 2 weeks of culture in the presence of
hygromycin B and puromycin (Sigma-Aldrich, 0.75 mg/ml). Selected
colonies were subsequently propagated in DMEM with 10% FCS,
penicillin-streptomycin (Sigma-Aldrich), hygromycin B and puromy-
cin. We confirmed the genomic integration of the KTN1 30 UTR by PCR
(see Supplementary Figure S8).

MiRNA transfections and luciferase assay
KTN1 cells were split in 12-well plates for both transfection and
induction experiments. hsa-miR-199a-3p mimic (c-300536-07-0005)
and miRNA mimic negative control (CN-002000-01-05, Thermo Fisher
Scientific) were transfected with a final concentration of 25 nM using
lipofectamine 2000 (Invitrogen) transfection reagent according to the
manufacturer’s protocol. At the same time in a different set of
experiment, hsa-miR-199a-3p expression was induced with doxycy-
cline (Sigma-Aldrich, 1 mg/ml). Cells were collected at different time
points (0, 2, 4, 8, 16, 24, 32 and 48 h). Both luciferase and qRT-PCR
were performed with cells from a single well. Renilla and firefly
activities were measured with the dual luciferase reporter assay system
(Promega) with a luminometer (Centro LB960, Berthold Technolo-
gies). Firefly luciferase was used as an internal control.

Quantitative real-time PCR
We extracted total RNA with the TRI reagent (Sigma) as per the
manufacturer’s protocol, and then applied DNase digestion with
RQ1DNase (Promega) followed by phenol-chloroform purification
and cDNA synthesis with SuperScriptIII (invitrogen) reverse trans-
criptase according to the manufacturer’s protocol. We measured mRNA
levels with the Step One Plus real-time PCR system (Applied
Biosystems) employing Power SYBR Green PCR Master Mix (Applied
Biosystems). Firefly expression was used as an internal control.
The primers for KTN1 30 UTR were forward—GGGG CTCGAG TGGG
AAACTGTTCATTTGAGG, reverse—TATT GCGGCCGC TTGCTGACGCC
ATTACAAAA. Primers for hsa-miR-199a-3p were miR-199a-
3p_1_forward—AAAAGGCCTCACTGGCCCCTCCCCCACTCTTTAGGAT,
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miR-199a-3p_1_reverse—AAAAGGCCTCACTGGCCGTGGGGATGGCA
GACTGATA. Primers for KTN1 cell line were GAGCGCGTGCTGAA
GAACGAG (forward) and TTGCTGACGCCATTACAAAA (reverse).
qRT-PCR primers were for firefly luciferase: hFluc-RT-rev—CGGTAGAC
CCAGAGCTGTTC, hFluc-RT-for—TGCAGAAGATCCTGAACGTG, and for
renilla luciferase: hRluc-RT-rev—CTAACCTCGCCCTTCTCCTT and
hRluc-RT-for—TCGTCCATGCTGAGAGTGTC.

In the qPCR data, the standard deviation on the log2 fold change was
on average 0.31 (corresponding to a 23.8% uncertainty on the fold
change), as typically observed in miRNA transfection experiments
(Supplementary Figure S2).

Fitting kinetic parameters

We now describe the strategies we used to fit the kinetic parameters to
the different data sets. Table I provides an overview of all parameters
and documents how we determined their values.

Fitting the parameters of Ago loading from the
fluorescence cross-correlation spectroscopy siRNA
micro-injection time course
We obtained the fractions of cytoplasmic Ago in complex with the
siRNA and the cytoplasmic fractions of siRNAs in complex with Ago 0,
1, 3, 6, 12, 24 and 48 h after siTK3 micro-injection together with the
standard errors on these fractions (Ohrt et al, 2008). This experiment
was the largest of those performed by Ohrt et al (2008). We subtracted
the fraction of bound Ago and bound siRNA at 0 h from all the mea-
surements so that the fraction of bound Ago and siRNA was 0% at 0 h.

To fit the parameters, we simulated the fraction of Ago in complex
with the siRNA and the fraction of siRNA in complex with Ago using
Equation (2). Initial parameter space exploration by gradient ascent
methods on the likelihood assuming a Gaussian error model suggested
initial parameter estimates: g¼ 10�5, d¼ 0.12, u¼ 0.12 and
X0¼16 000. We then refined these estimates and determined their
uncertainty by Markov Chain Monte Carlo. The chain was initialized at
10% of our initial estimates. From there, we performed Gaussian
moves with standard deviation set to 33% of our initial parameter
estimates, with a uniform prior that only allowed positive parameter
values. The chain ran for 106 sampling steps and visual inspection of
the sampling traces suggested that sampling was at equilibrium
(Supplementary Figure S1). Acceptance probability was 20.8%. The
parameter set with highest likelihood was g¼ 3.05�10� 6/molecule/
h, d¼ 0.102/h, u¼ 0.116/h and X0¼18 661.67 molecules. Finally, we
determined the posterior probability distributions of the parameters

from the MCMC samples, excluding the first 50 000 samples to ensure
that the chain was ‘burnt-in’ (Supplementary Figure S1).

The product of the miRNA–Ago association rate b and the fraction of
free Ago f0, g¼ bf0, was in the range of 10� 6/molecule/h suggesting
that the rate of small RNA binding to Ago is small or that there is
little free Ago at steady state. In contrast, small RNA dissociation from
Ago (u) appears to be about as fast as their decay (d), of the order
of 10�1/h. mRNA decay rates are in a similar range (Friedel et al, 2009;
Schwanhäusser et al, 2011). Finally, we estimated that X0C19 000
molecules of small RNA were injected in the cell at time t¼ 0 h.

Fitting changes in mRNA, protein and RPF abundance
upon miRNA transfection by previous studies, and in
the present study through luciferase activity and qPCR
of a reporter gene
We fixed the baseline mRNA decay rate d0 to the average of previously
estimated values. That is, Friedel et al (2009) estimated a median
decay rate of 0.15/h in murine fibroblasts and 0.13/h in human B cells,
while Schwanhäusser et al (2011) reported a median mRNA decay rate
of 0.08/h in murine fibroblasts. We used the average of these values,
0.12/h for d0, corresponding to a mRNA half-life of 5.8 h. For the
dynamics of miRNA loading into Ago, we assumed that the rates of
association (b)/dissociation (u) of the Ago–miRNA complex, the
miRNA decay rate d, and the fraction of free Ago at steady state f0 were
the same as in the experiment of Ohrt et al (2008). Hence, we fixed the
parameters g¼ bf0, u and d to the values mentioned in Figure 1B. The
remaining parameters X0, the initial amount of miRNA and d, the
factor that relates the fraction of loaded Ago to the relative change in
the mRNA decay rate, most certainly vary between experiments. Under
the bi-exponential Ago-loading model, d and X0 always occur as a
product in the analytical expression of ~aðtÞ (Equation 7 of the
Supplementary Material). The model has hence one free parameter
dX0 which we estimated by fitting mRNA profiling time-series data.
Similarly, the analytical expression of ~aðtÞ under the tri-exponential
Ago-loading model (Equation 13) depends on two parameters: ~dþ r,
the rate with which miRNAs are cleared from endosomes through
degradation or by transferring to the cytoplasm, and rV0d, that
quantifies the influence of the transfected miRNAs on mRNA
degradation.

For each transfection experiment (Wang and Wang, 2006; Baek et al,
2008; Selbach et al, 2008; Guo et al, 2010), we scanned 25 values of
~dþ r between 0.003/h and 0.6/h, equally spaced on a logarithmic
scale. For each of these values and for each gene, we first obtained the
rV0d parameter by maximum likelihood from the mRNA profiling data,

Table I Parameters were either obtained from previous measurements or fitted to the data

Figure 1 Figure 2 Figure 3 Figure 3 Figure 4 Figure 4 Figure 4
Ohrt Wang Transfection Induction Guo Baek Selbach

g miRNA–Ago association Fitted Fixeda Fixeda Fixeda Fixeda Fixeda Fixeda

d miRNA decay Fitted Fixeda Fixeda Fixeda Fixeda Fixeda Fixeda

u miRNA–Ago dissociation Fitted Fixeda Fixeda Fixeda Fixeda Fixeda Fixeda

X0 Amount of micro-injected miRNAs Fitted
d0 mRNA decay Fixedb Fixedb Fixedb Fixedb Fixedb Fixedb

s Protein decay Fixedc Fixedc Fixedd Fixedd

~dþ r Clearance from endosomes Fitted Fitted Fitted Fitted Fitted
rV0d miRNA-induced change in

mRNA decay (transfection)
Fitted Fitted Fitted Fitted Fitted

X0d miRNA-induced change in
mRNA decay by miRNAs (induction)

Fitted

l Translation repression Fitted Fitted Fitted Fitted Fitted

Rows correspond to parameters and columns to data sets. Parameters were either fitted, fixed to the indicated reference. Empty cells represent cases in which a given
parameter is irrelevant to the data set. To give an overview, we briefly indicate the references used to set the parameters. The main and Supplementary Methods sections
describe how we determined them.
aThe Ago-loading parameters g, d, u were fixed to the values inferred from the micro-injection and fluorescence cross-correlation spectroscopy experiments of Ohrt et al
(2008).
bThe mRNA decay rate d0 was fixed to 0.12/h, a value determined from the measurements of Friedel et al (2009) and Schwanhäusser et al (2011).
cThe decay rate s of the luciferase was set to 0.14/h, (https://tinyurl.com/promegaBatesLuciferase).
dProtein decay rates were obtained from the mass-spectrometry measurements of Cambridge et al (2011).
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assuming a Gaussian error model on the measured log2 mRNA fold
change. To set the standard deviation of the error model in the case of
the data of Wang and Wang (2006); Baek et al (2008); Selbach et al
(2008); Guo et al (2010) where biological replicates were not
performed, we used the value 0.25 from the miRNA transfection data
of Karginov et al (2007) (Supplementary Figure S2C). In the case of our
luciferase and qPCR measurements, we used the standard error
computed from triplicate measurements. We focused on genes that
carried a seed match to the transfected miRNA and whose cognate
mRNA levels were downregulated following miRNA transfection,
averaging log2 fold changes when several time points were available.
When analyzing the qPCR measurements of the present study, we also
discarded data points for which changes in mRNA and protein levels
could not be determined in triplicates because the machine failed to
amplify the target. We maximized the log-likelihood with respect to
rV0d by a combination of golden section searches and successive
parabolic interpolations implemented in the optimize() function of
the R software (R Development Core Team, 2006). Finally, by repeating
this procedure for the different values of ~dþ r, we determine the value
of ~dþ r that maximized the likelihood of each transfection experiment,
as well as of the gene-specific rV0d parameters. With only one time
point of mRNA and protein measurement in the experiments of Baek
et al (2008), the parameter estimation problem is under-determined. As a
result, the experiments of Baek et al (2008) do not suggest a single, most-
likely estimate for ~dþ r but rather a range of values that are consistent
with the measurements (Supplementary Figure S4B). The values of ~dþ r
that we inferred from Wang’s miR-124 transfection, our miR-199
transfection, and Guo’s miR-155 and miR-1 transfections were within
these ranges. Fixing the value of this parameter to 0.014/h—a value
inferred from Wang’s miR-124 transfection (Figure 2)—we then estimated
the rV0d and l parameters for each gene, based on the measured change
in mRNA level at 24 h and protein change 48 h post transfection.

In experiments that also featured protein quantification or RPF
profiling data, we further obtained maximum-likelihood estimates of
the l parameter for each gene given the previously determined ~dþ r
and rV0d parameters and assuming the same Gaussian error model on
the log2 fold change as for the mRNA data. When fitting the SILAC data
of Baek et al (2008) and luciferase activities in our reporter system, we
used the protein dynamics defined by Equation (6) while Equation (7)
was used with the pSILAC data of Selbach et al (2008). In total, we
thereby analyzed 117, 154 and 106 genes with seed matches to miR-
124, miR-1 and miR-181 in Baek et al (2008) and 139, 211, 319, 197 and
157 genes in the let-7, miR-155, miR-16, miR-1 and miR-30a
transfections of Selbach et al (2008) for which protein turnover
measurements were available (Cambridge et al, 2011). In the case of
the RPF profiling experiments of Guo et al (2010), we first computed
the log2 fold change in translation efficiency ri–mi from the log2 fold
change in RPF ri and mRNA abundance mi. In the case of our qPCR and
luciferase measurements, we set the decay rate s of the luciferase to
0.14/h (see https://tinyurl.com/promegaBatesLuciferase). We then
fitted l by comparing the measured log2 fold change in translation

efficiency to the model prediction log2
1

1þ l~aðtÞ

� �
assuming the

previously described Gaussian error model, where ~aðtÞ is the change
in the mRNA decay rate (Equation 3).

Fitting changes in luciferase activity and mRNA
abundance upon miRNA induction
We first fitted the X0d parameter from temporal changes in the mRNA
level by maximum likelihood assuming a Gaussian error model on the
measured log2 fold change. The standard deviation was set to the
standard error computed from triplicate measurements. By the same
method as in the previous paragraph, we first determined the
maximum-likelihood estimate of X0d from the qPCR data based on
the Ago-loading dynamics of Equations (14) and (10), and then
estimated l from the luciferase activities using Equation (11).

Simulations

We simulated the dynamics of miRNAs and their targets under two
regulatory scenarios using the same model as in an induction

experiment (Equations 14, 10 and 11), where a miRNA is synthesized
into an Ago accessible compartment X. We used parameter estimates
from the biophysics data of Ohrt et al (2008) for association g,
dissociation u and decay d. d was set to 7.32 (see below for the
justification). Protein decay rate s was initially set to 0.015/h (48 h
half-life).

Simulating protein recovery after a sudden block in
miRNA expression
We set X(0) to 18 000 which in the context of the other parameters
implied that 50% of Agos are loaded with the miRNA at steady state
(Supplementary Figure S5). This is representative of the case of highly
expressed miRNAs such as miR-430 in the zebrafish embryo (Chen
et al, 2005) or miR-122 in liver (Landgraf et al, 2007). We used
measurements made on the miR-223 knockout neutrophils (Baek et al,
2008) to determine d; namely, from the observations that miR-223
represents 5% of all miRNAs in neutrophils (Baek et al, 2008) and that
miR-223 targets are upregulated by 37% upon miR-223 knock-out (log2

value of 0.45 in Supplementary Table S2), we can use Equation (9) to
infer that the miRNA can change the rate of mRNA decay by a factor
d ¼ 0:37

0:05 ’ 7:4 when Ago is fully saturated with the miRNA. The
protein decay rate s was initially set to 0.015/h (48 h half-life). At
t¼ 0 h, miRNA synthesis stops, that is c(t)¼ 0. Initial conditions were
computed under the scenario that all variables are at steady state at
t¼ 0 h. By solving Equations (10), (11) and (4) at steady state, we

obtain að0Þ ¼ gXð0Þ
u , fmð0Þ ¼ 1

1þ ~að0Þ and fpð0Þ ¼ fmð0Þ
1þ l~að0Þ. We then

simulated free miRNAs X, loaded Ago a, mRNA fm and proteins
fp according to Equations (10), (11) and (4) (see Supplementary
Figure S5). In the absence of the miRNA, the fold change in protein
level is fp¼ 1 by definition, but the value 1 is reached only as t tends
toward infinity. We defined the recovery time as the amount of time
necessary for fp(t) to exceed 0.9. We then monitored the recovery time
as a function of the protein decay rate which we varied between 0.014/
h and 0.14/h (corresponding to half-lives ranging from 5 to 48 h), and
general miRNA kinetics where we multiplied g¼bf0, u and d by a
common factor k ranging from 1 to 3. Finally, simulations were
performed under two scenarios: no translation repression l¼ 0 and
equal contribution of translation repression and mRNA decay l¼ 1.

Computing the amplitude of oscillations in protein
abundance in response to a miRNA with cyclic
expression pattern
In this simulation, we sought to reproduce the observations of Krol
et al (2010) by implementing the scenario in which miRNA synthesis
was half-activated during the first 12 h of a 24-h cycle, and then fully
activated during the second half of the cycle. We thus considered the
miRNA synthesis function

cðtÞ ¼
1
2 X0d if 0 � t mod24o12
X0d if 12 � t mod24o24

�

We again set X0 to 18 000 which in the context of the other parameters
implies that 50% of Agos would be loaded with the miRNA if miRNA
synthesis remained fully active long enough for steady state to be
reached. Note that defining miRNA synthesis as a function of the
miRNA decay rate d makes it possible to change the rate d without
changing the amount of free miRNA and loaded Ago. Initial conditions
were computed numerically by simulating free miRNAs X, loaded Ago
a, mRNA fold change fm and protein fold change fp according to
Equations (10), (11) and (4) for 100 cycles (2400 h). From these initial
conditions, we then simulated another three cycles (72 h) for
visualization purposes (see Supplementary Figure S5). We then

defined the amplitude of the oscillations as the ratio
maxfpðtÞ
minfpðtÞ between

the highest and smallest protein levels achieved in these three cycles.
We monitored the amplitude of protein oscillations as a function of the
protein decay rate which we varied between 0.014/h and 1.39/h
(corresponding to half-lives ranging from 30 min to 48 h). In addition,
the measurements of Krol et al (2010) suggest that miRNAs responding
to light-dark adaptation undergo fast turnover, with half-lives as short
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as 30 min, 14 times faster than the observed decay in the fluorescence
cross-correlation spectroscopy experiments of Ohrt et al (2008) and
used in our model. We therefore varied the miRNA decay rate, Ago
association rate and Ago dissociation rates between their original
values up to a 14-fold increase. Thereby, we varied the miRNA decay
rate from d¼ 0.10/h to 1.39/h, the Ago dissociation rate from u¼ 0.12/
h to 1.61/h and the normalized association rate from g¼ 3.11�10� 6/
molecule/h to 4.27�10� 5/molecule/h.

Supplementary information

Supplementary Information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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