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1 Supplementary Methods

1.1 Human and mouse promoteromes
The central entities whose regulation is modeled by ISMARA are promoters. When analyzing expres-
sion data, be they micro-array or RNA-seq, ISMARA estimates and models the expression profiles of
individual promoters, and when analyzing ChIP-seq data ISMARA models the chromatin state of ge-
nomic regions centered on promoters. Thus, the first step in the analysis consists of the construction of
reference sets of promoters in human and mouse. To make a comprehensive list of promoters we used
two sources of data: deepCAGE data, i.e. next-generation sequencing data of 5’ ends of mRNAs [1, 2],
and the 5’ ends of all known mRNAs listed in GenBank.

Using CAGE data from a considerable set of human and mouse tissues, we recently constructed
genome-wide human and mouse ‘promoteromes’ [3] consisting of a hierarchy of individual transcription
start sites (TSSs), transcription start clusters (TSCs) of nearby co-regulated TSSs, and transcription start
regions (TSRs), which correspond to clusters of TSCs with overlapping proximal promoter regions.
As the basis of our promoter sets we started with the sets of TSCs, i.e. local clusters of TSSs whose
expression profiles are proportional to each other to within experimental noise, as identified by deep-
CAGE.

As the currently available CAGE data do not yet cover all cell types in human and mouse, a sub-
stantial number of cell type-specific promoters are not represented within this set of TSCs. We thus
supplemented the TSCs with all 5’ ends of mRNAs, using the BLAT[4] mappings from UCSC Genome
Browser web site[5]. To avoid transcripts whose 5’ ends are badly mapped, we filtered out those for
which more than 25 bases at the 5’ end of the transcript were unaligned. We then produced reference
promoter sets by iteratively clustering the TSCs with the 5’ ends of mRNAs as follows: Initially each
TSC and each 5’ end of an mRNA forms a separate cluster. At each iteration the pair of nearest clusters
are clustered, with the constraint that there can be at most one TSC per cluster. That is, we never cluster
two TSCs together as our previous analysis in [3] has already established that each TSC is independently
regulated. Here the distance between two clusters is defined as the distance between the nearest pair of
TSSs of the two clusters, i.e. the distance between the rightmost TSS of the left cluster and leftmost
TSS of the right cluster. This iteration is repeated until the distance between the closest pair of clusters
is larger than 150 base pairs. Note that we thus chose the length of sequence wrapped by a single nu-
cleosome, i.e. roughly 150 base pairs, as an ad hoc cut-off length for two TSSs to belong to a common
promoter. The reasoning behind this choice of cut-off, is that, on the one hand, we have empirically
observed that co-expressed TSSs can spread over roughly this length-scale and, on the other hand, that
it is not implausible that the ejection of a single nucleosome near the TSS may be responsible for set-
ting this length scale. In any case, the resulting promoters are not sensitive to the precise setting of this
cut-off (data not shown). Finally, inspection of the results showed, especially in ubiquitously expressed
genes, many apparent TSSs from Genbank that appear downstream of both the TSSs identified by deep-
CAGE and the annotated RefSeq transcripts. It is highly likely that many of these apparent TSSs are
due to cDNA sequences that were not full length. Indeed, only a small fraction of the transcripts in the
database of mRNAs underwent expert curation, and truncated transcripts are likely common. To avoid
such spurious apparent TSSs we removed all clusters which did not contain at least one curated transcript
(RefSeq) or a TSC. Finally, since a sequence of at least one associated transcript is necessary to estimate
a promoter’s expression level from either RNA-seq or micro-array data, we also discarded all promoters
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that consisted solely of a TSC.
For human, the resulting reference promoter set had 36′383 promoters, of which 13′265 contained

both a TSC and at least one RefSeq transcript, 14′538 contained only a TSC together with non-RefSeq
transcripts, and 8′580 had at least one RefSeq transcript and potentially non-RefSeq transcripts, but no
TSC. For the mouse genome, the corresponding numbers are: 34′050 promoters in total, 8′578 RefSeq-
only, 12′303 TSC-only, and 13′169 with both a TSC and at least one RefSeq transcript. These reference
promoters sets cover almost all known protein-coding genes in human and mouse.

Finally, as we discussed in [3], mammalian promoters clearly fall into two classes associated with
high and low content of CpG dinucleotides, and these promoter classes have clearly distinct architectures,
i.e. different lengths, different numbers of TSSs per promoters, and different distributions of transcription
factor binding sites (TFBSs). We classified all promoters into a high-CpG and low-CpG class based on
both the CG content and the CpG content in the proximal promoter, as described in [3]. In the TFBS
prediction below we perform separate predictions for high-CpG and low-CpG promoters.

1.2 A curated set of regulatory motifs
We use standard position dependent weight matrices (WMs) to represent regulatory motifs, i.e. the
sequence specificities of TFs. Each WM is named for the TFs that are annotated to bind its site. For
some motifs the names correspond to multiple TFs which are all assumed to bind to the same sites. We
used a partly manual curation procedure whose details were first described in [6]. For completeness, we
here also give a description of this curation procedure.

For a number of reasons regarding data quality and annotation ambiguities, the construction of a set
of position-specific weight matrices (WMs) for mammalian transcription factors is rife with problems
that, in our opinion, do not currently have a clean solution. Therefore, our procedures necessarily involve
several subjective choices, judgments, and hand-curation, which are certainly far from satisfactory.

Our main objectives were

1. To remove redundancy, we aim to have no more than 1 WM representing any given TF. Whenever
multiple TFs have WMs that are statistically indistinguishable or when their DNA binding domains
are virtually identical, then we use only one WM for that set of TFs.

2. To associate WMs with TFs based on the sequences of their DNA binding domains. That is, we
obtain lists of TFs that can plausibly bind to the sites of a given WM by comparison of DNA
binding domain sequences of TFs known to bind to the sites with those of all other TFs.

3. Re-estimation of WMs using genome-wide predictions of regulatory sites in the proximal promot-
ers of CAGE TSSs.

The input data for our WM construction consisted of

1. The collection of JASPAR vertebrate WMs plus, for each WM, the amino acid sequence of the TF
that JASPAR associates with the WM [7].

2. The collection of TRANSFAC vertebrate WMs (version 9.4) and the amino acid sequences of all
vertebrate TFs in TRANSFAC that are associated with those WMs [8].

3. A list of 1322 human TFs (Entrez gene IDs) and their amino acid sequences (from RefSeq).

4. A list of 483 Pfam IDs corresponding to DNA binding domains and their Pfam profiles [9].

We decided not to include 6 TRANSFAC motifs, which were constructed out of less than 8 sites:
M00326 (PAX1, PAX9), M00619 (ALX4), M00632 (GATA4), M00634 (GCM1, GCM2), M00630
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(FOXM1), M00672 (TEF). TRANSFAC often associates multiple WMs with a single human TF. Al-
though there undoubtedly are cases where a single TF can have multiple distinct modes of binding DNA,
and could therefore be realistically represented by multiple WMs, we believe that for the very large ma-
jority of TFs it is more realistic to describe the DNA binding specificity of the TF with a single WM.
Indeed, a manual inspection of cases in which TRANSFAC associated multiple WMs with a single TF
shows that these WMs are typically highly similar and appear redundant. Therefore, we decided to
remove this redundancy and for each TF with multiple WMs in TRANSFAC we choose only a single
‘best’ WM based on TRANSFAC’s own matrix quality annotation, or WM information score when there
were multiple WMs with the same quality score. The information score of a WM is given by 2 times the
length of the WM minus its entropy in bits.

We next aimed to obtain, for each human TF, a list of WMs from JASPAR/TRANSFAC, that can
potentially be associated to this TF. To do this we aim to find, for each TF, which motifs from JASPAR/-
TRANSFAC are associated with a TF that has a highly similar DNA binding domain. To this end we
we ran Hmmer [10] with the DNA binding domain (DBD) profiles from Pfam to extract the DBDs from
all TFs (E-value cut-off 10−9) associated with either JASPAR or TRANSFAC matrices. We then repre-
sented each such TF with the union of its DNA binding domain sequences. Next we used BLAT to map
the DBDs of all TFs associated with JASPAR/TRANSFAC matrices against the entire protein sequences
of all human TFs. For each human TF we then extracted a list of all JASPAR/TRANSFAC matrices for
which the DBDs of at least one associated TF has a significant BLAT hit (default parameters) against the
TF sequence. For each human TF the associated WMs were ordered by the percent identity of the hit,
i.e. the fraction of all amino acids in the DBDs that map to matching amino acids in the TF.

From this data we created a list of ‘necessary WMs’ as follows. For each human TF we obtain the
JASPAR WM with the highest percent identity in the DBDs of an associated TF. If there is a TRANSFAC
WM with a higher percent identity than any JASPAR TF we record this WM as well. Thus, the necessary
WMs are those that are the best match for at least one human TF. This list yielded 381 WMs representing
980 human TFs (often the same WM is the best match for multiple TFs). Manual inspection indicated
that a lot of redundancy (essentially identical looking WMs) remained in this list. First we often have
both a TRANSFAC and a JASPAR WM for the same TF and moreover often there are multiple TFs, each
with its own WM, that look essentially identical. We thus want to fuse WMs in the following situations

1. Different WMs for TFs with identical or near identical DBDs.

2. WMs that are statistically indistinguishable, predict highly overlapping sets of sites, and are asso-
ciated with TFs that have similar DBDs.

For each pair of WMs we obtained three similarity measurements

1. The percent identity of the DBDs of the TFs associated with the WMs. If there are multiple TFs
associated with a WM we take the maximum over all TF pairs.

2. The overlap of the binding sites predicted by each WM. We use MotEvo to predict TFBSs in
all proximal promoters and we calculate what fraction of predicted TFBS positions are shared
between the two WMs.

3. A statistical measure of the similarity of the two WMs. Here we take the two sets of sites that
define the two WMs and calculate the likelihood-ratio of these sites assuming they either derive
from a single underlying WM or assuming that the set of sites for each WM derives from an
independent WM.

For each of these three criteria we set a cut-off: 95% identity of the DBDs, 60% overlap of predicted
TFBSs, and a likelihood-ratio of e40. Using single-linkage clustering, we cluster all WMs whose simi-
larity is over the cut-off for at least 1 of these three criteria. The resulting clusters were then all checked
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manually and whenever the linkage was dubious we split the cluster. That is, we took a conservative
attitude towards removing redundancy and only kept clusters when we were convinced the WMs were
essentially identical. For each cluster we then constructed a new WM by aligning the WMs in the clus-
ter so as to optimize the information content of the resulting fused WM, which is obtained by simply
summing the counts across each column in the alignment.

Finally, we used MotEvo [11] to predict TFBSs for all WMs in the multiple-species alignments of all
human proximal promoters. We then constructed new WMs from the list of predicted TFBSs for each
WM, weighing each predicted site with its posterior probability (which incorporates position-specific
prior probabilities, as described below). The number of top-scoring sites was chosen manually for each
motif and was between 100 and 4000 sites, in most cases being 200 or 500 sites.

At this point we excluded one TRANSFAC motif M00395 (HOXA3, HOXB3, HOXD3) which had
very low information content and predicted predicted only very low-probability sites. We additionally
excluded the motifs M00480 (TOPORS) and M00987 (FOXP1), which were unrealistically specific and
(in case of M00987) predicted stretches of poly(T).

For a few TFs we obtained more recent WMs from the literature (SP1, OCT4, NANOG, SOX2,
XBP1, PRDM1, and the RXRG dimer) and we used these to replace the corresponding WM in the list.

We improved several motifs by running MotEvo on TF ChIP-seq data: SRF, STAT1/3, REST and
ELK1/4/GABPA/GABPB1. Some other motifs were obtained by predicting de novo using the Phy-
logibbs algorithm [12] on ChIP-seq data: SPI1, CTCF, OCT4, SOX2 and NANOG.

For a few motifs JASPAR has recently updated or introduce new motifs which were based on high-
throughput data and we included these motifs.This is the case for FOXA2, KLF4, EWSR1-FLI1, FEV,
NR4A2. We also removed MA0118, as it had been discarded from the JASPAR data base.

Our final list contains 189 WMs. For each final WM there is an ordered list of associated human TFs,
ordered by percent identity of the DBDs of TFs known to bind sites of the WM and the DBDs of the TF.
We then checked this list of associations by hand and for each WM cut-off the list of associated human
TFs manually. In total 340 human TFs are associated with our 189 WMs. The corresponding mouse
orthologous TFs were selected using the MGI data base [13]. The entire set of WMs and mapping to
associated TFs is available from the SwissRegulon website (http://www.swissregulon.unibas.ch).

1.3 Transcription factor binding site predictions
After creating reference promoter sets and curating a set of mammalian regulatory motifs we next pre-
dicted TFBSs in the proximal promoter regions of each promoter. Analysis of sequence conservation
in the neighborhood of TSSs (see [3]) and experimentation with TFBS prediction in regions of differ-
ent lengths around TSSs indicated that a reasonable balance between sensitivity (i.e. including relevant
binding sites) and specificity (avoiding too many false positive predictions) can be obtained by predicting
TFBSs in a 1 kilobase region around the TSSs of each promoter.

For each promoter, we thus extended the promoter sequence spanned by its cluster of TSSs by 500
bp upstream and 500 bp downstream. We denote this as the proximal promoter region of a promoter. We
then extracted the sequence of the reference species, i.e. human or mouse and orthologous regions from
6 other mammals (human or mouse, rhesus macaque, cow, dog, horse, and opossum) using pairwise
BLASTZ[14] alignments. For each promoter, we multiply aligned the orthologous regions using T-
Coffee [15].

To obtain a phylogenetic tree for these mammalian species, with branch lengths corresponding to the
expected number of substitutions per neutrally evolving site, we used methods described previously[16].
Briefly, we first obtained the topology of the tree from the UCSC Genome Browser[17]. Then, for each
pair of species we made pairwise alignments of the coding regions of orthologous genes and extracted
all third positions in fourfold-degenerate codons of amino acids that are conserved between the two
species. Using these fourfold-degenerate positions we estimated a pairwise distance for each pair of
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species. Finally, we estimated the lengths of the branches in the phylogenetic tree as those that minimize
the square-deviations between the implied pairwise distances and the pairwise distances estimated from
the fourfold-degenerate positions. The resulting tree structure is shown in Suppl. Fig. 1.

human
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0 0.2 0.4 0.6 0.8
substitutions / neutrally evolving site

Supplementary Figure 1: The phylogenetic tree used by MotEvo for the transcription factor binding site
predictions that are used by ISMARA.

The multiple sequence alignments were then used together with the phylogenetic tree and the col-
lection of WMs as an input for TFBS predictions using the MotEvo algorithm[11]. Given a multiple
alignment, MotEvo considers all ways in which the sequence of the reference species can be segmented
into ‘background’ positions, ‘binding sites’ for one of the supplied WMs, and ‘unknown functional el-
ements’ (UFEs). The likelihood of alignment columns assigned to background are calculated under a
model of neutral evolution along the specified phylogenetic tree. The likelihood of alignment segments
assigned to be a site for a given WM are calculated by first estimating which of the species have retained
a site for the WM (based on the WM scores of the individual sequences) and then applying an evolution-
ary model in which substitution rates are set so as to match the sequence preferences of the WM. Finally,
segments assigned to be UFEs are assumed to evolve under unknown purifying selection constraints on
the sequence, which is implemented by treating them as sites for an unknown WM. Each unknown WM
column is a nuisance parameter that is integrated out of the likelihood. Finally, MotEvo assigns, at each
position of the alignment and for each WM, a posterior probability that a site for the corresponding WM
occurs at this position.

Since most motifs show clear positional preferences relative to TSS, we implemented, separately
for each motif, a distribution of position-dependent prior probabilities of site occurrence as a function
of position relative to the TSS and fitted these distributions by maximum likelihood using expectation-
maximization. In addition, since high-CpG and low-CpG promoters have highly distinct configurations
of TFBSs, we estimated the position-dependent prior probability distributions separately for high-CpG
and low-CpG promoters.

The final result of this analysis is a matrix N, with Npm the total number of predicted sites for
motif m in promoter p, i.e. the sum of the posterior probabilities of the individual sites. To reduce the
probability of spurious predictions, we set Npm = 0 whenever the sum of the posteriors of all sites
combined was less than 0.1.

1.4 Associating miRNA target sites with each promoter
Apart from incorporating the effects of TFBSs in promoters, ISMARA also integrates the effects of miR-
NAs in its modeling of expression levels. To this end, we needed to obtain a set of predicted miRNA
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target sites for each promoter. We base our predictions on the miRNA target predictions of TargetScan
using preferential conservation scoring (aggregate PCT ) [18] which has shown consistently high perfor-
mance in various benchmark tests. As opposed to focusing on individual miRNAs, TargetScan groups
miRNAs that have identical subsequences at positions 2 through 8 of the miRNA, i.e. the 2-7 seed re-
gion plus the 8th nucleotide, and provides predictions for each such seed motif. We will treat these seed
motifs exactly like the regulatory motifs (WMs) for TFs, i.e. a miRNA seed motif can be associated with
multiple miRNAs. TargetScan provides predictions for 86 mammalian miRNA seed motifs in total.

TargetScan PCT provides a score for each seed motif and each RefSeq transcript. To obtain a ‘site
count’ Npm for the number of sites of miRNA seed motif m associated with promoter p we average the
TargetScan PCT scores of all RefSeq transcripts associated with the promoter p. Finally, the miRNA
seed motif site counts Npm are simply added as columns to the site count matrix N with site counts of
TFBSs.

1.5 Expression data processing
When using expression data from oligonucleotide microarrays, the raw probe intensities are corrected for
background and unspecific binding using the Bioconductor packages affy[19], oligo[20], and gcrma[21],
depending on the type of the particular microarray used. The micro-arrays that are currently supported
by ISMARA are listed in supplementary table 1.

Microarray Organism Producer
HG-U133A Homo sapiens Affymetrix
HG-U133B Homo sapiens Affymetrix

HG-U133 Plus 2 Homo sapiens Affymetrix
HG-U133A 2 Homo sapiens Affymetrix

HuGene-1 0-st-v1 Homo sapiens Affymetrix
HuGene-1 1-st-v1 Homo sapiens Affymetrix

HuGene-2 0-st Homo sapiens Affymetrix
HuGene-2 1-st Homo sapiens Affymetrix
HT HG-U133A Homo sapiens Affymetrix
HT HG-U133B Homo sapiens Affymetrix

HT HG-U133 Plus PM Homo sapiens Affymetrix
Mouse430 2 Mus musculus Affymetrix

Mouse430A 2 Mus musculus Affymetrix
MOE430A Mus musculus Affymetrix
MOE430B Mus musculus Affymetrix

MoGene-1 0-st-v1 Mus musculus Affymetrix
MoGene-1 1-st-v1 Mus musculus Affymetrix

HT MG-430A Mus musculus Affymetrix
HT MG-430B Mus musculus Affymetrix
MG U74Av2 Mus musculus Affymetrix
MG U74Bv2 Mus musculus Affymetrix
MG U74Cv2 Mus musculus Affymetrix

Supplementary Table 1: Microarrays currently supported by ISMARA.

For its further analysis, ISMARA uses the logarithms of the probe intensities. For a given sample,
the histogram of log-intensities is generally bimodal, with the modes corresponding to probes of non-
expressed and expressed genes. The probes are classified as expressed or non-expressed in each sample
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separately by fitting a two-component Gaussian mixture model to the log-intensity data using the Mclust
R package[22, 23]. Probes that are consistently non-expressed are filtered out from further processing;
a probe is considered not to be expressed if in all the samples the probability of it belonging to the
expressed class is below 0.4. Subsequently, the intensity values of the remaining probes are quantile
normalized across all input samples.

Microarray probes can hybridize to multiple transcripts, belonging to different genes, or different
isoforms of one gene, and we decided not to rely on transcript annotations of a micro-array producer.
Instead, we comprehensively mapped the probe sequences to the set of all transcripts that are associated
with our reference set of promoters. Note that we thus also ignore the annotation of probes into probe
sets. To calculate the expression of a promoter we average the log-expression levels of all probes that
map to one (or more) of the transcripts associated with the promoter (i.e. the start of the transcript is
a member of the cluster of starts that defines the promoter). The expression level of the promoter is
then a weighted average of the expression levels of these probes, where a probe that maps to n different
transcripts obtains a weight 1/n. That is, in general, a probe can map to multiple transcripts.

When ISMARA uses RNA-seq for input expression data, it expects the RNA-seq data to be provided
as genome alignments of the reads to the hg19 or mm9 genome assembles in BED or BAM format.
The loci of the mapped reads are then intersected with the genome alignments of all transcripts that are
associated with reference promoters. A read is associated with a particular transcript if its mapping falls
entirely into its exons. Note that, more recent RNA-seq data in some cases involved reads that are so
long that, frequently, the read overlaps two rather than a single exon of the transcript. To take this into
account, recent mapping algorithms allow the start and end of the read to map to different genomic loci.
The ISMARA pipe-line associates such a mapping with a given transcript when both the start and end
piece map to one of its exons. In the future ISMARA may be extended to include the mapping of raw
reads themselves.

To obtain an expression level for each promoter ISMARA calculates a weighted average over all
reads mapping to the transcripts associated with the promoter. The weighting results from multiple
mappings at two levels. Firstly, a read can map to multiple genomic loci and, secondly, a single locus
may intersect multiple transcripts that are associated with multiple promoters. When a read maps to n
genomic loci, we assign a weight of 1/n to each locus. If that locus intersects transcripts of m different
promoters, then this read contributes a final weight of 1/(nm) to the expression of the transcript. Each
transcript t is assigned a total weight wt that consist of the sum of the weights of all reads mapping to
it. Note that the expected value of wt is both proportional to the average number of mRNAs per cell
this transcript t has as well as proportional to the length lt of the transcript. The normalized weight
w̃t = wt/lt is proportional to the number of mRNAs per cell of transcript t. The expression of a
promoter p is measured in terms of the total number of mRNAs deriving from this promoter. Thus, for
each promoter p, we calculate a total weight wp by summing w̃t over all transcripts t that are associated
with the promoter, i.e. wp =

∑
t w̃t. We obtain such a weight wps for each promoter p and each sample

s. Promoters that have weights wps = 0 in all samples are discarded. There will be some promoters that
have zero weights in some, but not all, of the samples. In order to define log-expression values for all
promoters we add a small pseudo-count to the weights wps. For each sample s, we rank the promoters
with nonzero weight by their weight wps and calculate the 5th percentile pcs. We then add this weight
pcs as a pseudo-count to all weights wps of promoters, including promoters that had zero weights in
sample s. Finally, we normalize the wps and log-transform them as follows:

Eps = log2

[
106

wps∑
p′ wp′s

]
. (1)

Note that the resulting expression level Eps corresponds to the logarithm (base 2) of the number of
mRNAs deriving from promoter p, per million mRNAs in the cell. Note that this weighting procedure
for calculating promoter expression levels is robust to redundancy in the transcript sets. For example,
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when a promoter is associated with k highly overlapping transcripts, then a read mapping within the
exons of these transcripts will get assigned to all these transcripts, with a weight 1/k for each. When
the total weight wps of the promoter is calculated, these k are then summed back and will in the end
contribute precisely 1 read.

1.6 ChIP-seq data processing
Apart from modeling expression dynamics, ISMARA can also process ChIP-seq data to automatically
model chromatin state (or TF binding) changes at promoters genome-wide. Examples of such chromatin
state data include histone occupancy, histone modifications, TF binding and DNAse1 hypersensitivity
in promoter regions. After several experiments, we found that integrating the chromatin signal from a
region of 2000 bps centered on the TSS of each promoter gives the most robust results. To obtain a
chromatin state level Eps of promoter p in sample s, we calculate the sum rps of the reads that map
entirely within this region around promoter p and transform to the log-space after adding a pseudocount:

Eps = log2

(
rps +

Nsl

L

)
, (2)

where the second term is a pseudo-count, Ns is the total number of reads mapped to the genome in
sample s (the number of lines in the BED file), l = 2000 is the length of the regions, and L is the
total length of the genome. Note that this pseudo-count is precisely the number of reads that would be
expected if all Ns reads where distributed uniformly over the genome. We set to pseudo-count to this
value to make the pseudo-count roughly of the same size as the read-count from background reads in
regions where the chromatin mark in question does not appear. The rational is that, in regions where there
are only background reads, statistical fluctuations may cause the read-counts rps to change significantly
from sample to sample. By adding a constant pseudo-count of roughly the same size, these fluctuations
are effectively dampened. More formally, this pseudo-count results within a Bayesian context if we use
a Dirichlet prior with an expected density l/L for each region.

1.7 Motif activity fitting.
We model the log-expression (or ChIP-seq signal) value Eps of a promoter p in sample s as a linear
function of the site-counts Npm for all motifs m associated with the promoter, i.e. either TFBSs in the
proximal promoter region or miRNA binding sites in the 3’ UTRs of associated transcripts. In each
sample s, the contribution of the sites Npm to Eps is given by the (unknown) motif activity Ams. That
is, we fit a model of the form:

Eps = c̃s + cp +
∑
m

NpmAms + noise, (3)

where c̃s and cp are sample and promoter-dependent constants.
The last ‘noise’ term corresponds to the difference between the signal that the model predicts, and

the signal Eps that was actually measured. This difference generally results from multiple sources. First,
there are measurement errors in Eps. Second, there is ‘biological noise, i.e. uncontrolled fluctuations
in the true state of the biological system. Third, and most importantly, there is the error in the model.
Regarding the distribution of measurement errors and biological noise there has been a considerable
amount of work in the literature. For microarray measurements, after background correction and nor-
malization, the sum of biological and measurement noise in log-expression levels can be reasonably
approximated by a Gaussian. For next-generation sequencing data such as RNA-seq and ChIP-seq data,
which is intrinsically digital in nature, we have previously studied the distribution of biological and mea-
surement noise using data from replicate experiments [3]. This analysis showed that on a normal (i.e.
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non-logarithmic) scale, the noise distribution can be well approximated by Poisson sampling with a rate
that is itself log-normally distribution (with some variance σ2). As we showed in [3], in log-scale this
distribution can be well-approximated by a normal distribution with a variance that is the sum of the
variance σ2 of the original log-normal, and a term 1/n, where n is the total read-count, which results
from the Poisson sampling noise. An alternative model of biological and replicate noise that has been
used in the literature is the negative binomial distribution [24, 25]. A negative binomial is obtained when
there is Poisson sampling noise with a rate that is itself Gamma distributed. Like the distribution derived
in [3], this distribution also has the property that, in log-scale, the contribution to the variance due to
Poisson sampling decreases with absolute expression level.

However, as mentioned above, besides uncontrolled fluctuations in the state of the biological system
and measurement noise, the ‘noise’ term in equation (3) also contains a contribution from the error of the
model. That is, even if experimentalists could perfectly control the state of the biological system (i.e. no
biological noise) and make measurements without any errors (i.e. no measurement noise) then, because
of the simplicity of our model, there would still be a large difference between the predicted signal levels
of each promoter, and the true signal levels. Indeed, our model typically only captures a modest fraction
of the variance in expression and ChIP-seq levels, meaning that the error in the model is generally much
larger than the biological and measurement noise. That is, the noise term in equation (3) is dominated by
the error in the model. Consequently, the relevant noise distribution is not the distribution of biological
and measurement noise, but the distribution of model errors. Since we have no specific information
regarding the form of the distribution of modeling errors we will make the assumption that the noise is
Gaussian distributed with an unknown variance σ2 that is the same for all promoters and in all samples.

Under these assumptions we find the following expression for the likelihood of the expression data
given the site-counts, motif activities and sample and promoter-dependent constants:

P (E | A, c, c̃, N, σ) ∝
∏
p,s

1

σ
exp

[
−

(Eps − c̃s − cp −
∑
mNpmAms)

2

2σ2

]
(4)

We first maximize this expression with respect to all the constants cp and c̃s, and substitute these with
their maximum likelihood estimates. After doing this we obtain:

P
(
E
∣∣∣ A′ , N, σ) ∝ σ−PS exp

−
∑
ps

(
E
′

ps −
∑
mN

′

pmA
′

ms

)2
2σ2

 , (5)

where P is the number of promoters, S is the number of samples, the N
′

pm are a motif-normalized
site-counts N

′

pm = Npm − 〈Nm〉, with 〈Nm〉 the average site-count per promoter for motif m, the
A′ms are sample-normalized activities A

′

ms = Ams − 〈Am〉, i.e. with 〈Am〉 the average activity of
motif m across the samples, and the E

′

ps are sample- and promoter-normalized expression values E
′

ps =

Eps−〈Ep〉−〈Es〉+〈〈E〉〉. That is the log-expression matrixE
′

ps is normalized such that all its rows and
columns sum to zero, the activities A

′

ms are normalized such that the average activity over all samples
is zero, i.e.

∑
sA
′

ms = 0, and the site-counts N
′

pm are normalized such that the average count over all
promoters is zero, i.e.

∑
pN

′

pm = 0.
To avoid over-fitting we assign a symmetric Gaussian prior to each motif activity, i.e. the joint prior

for all activities is given by:

P
(
A
′
∣∣∣ λ, σ) ∝∏

ps

exp

[
− λ2

2σ2

∑
m

A
′2
ms

]
, (6)
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where the constant λ2 sets the width of prior distribution relative to the width of the likelihood function.
Using this prior with the likelihood derived above, the posterior distribution of motif activities takes the
form:

P
(
A
′
∣∣∣ E,N, σ, τ) ∝ σ−PS exp

−
∑
p,s

((
E
′

ps −
∑
mN

′

pmA
′

ms

)2
+ λ2

∑
mA

′2
ms

)
2σ2

 . (7)

Since equation (7) factorizes into independent expressions for the different samples, it is enough to
consider one sample at a time. The posterior distribution for the motif activities in a particular sample
takes the general form of a multi-variate Gaussian centered around A

′∗
ms:

P
(
A
′

s

∣∣∣ E,N, σ) ∝ σ−P exp

−∑mm̃

(
A
′

ms −A
′∗
ms

)
Wmm̃

(
A
′

m̃s −A
′∗
m̃s

)
+ χ2

s

2σ2

 , (8)

where the χ2
s is the unexplained part of variance in sample s

χ2
s =

∑
p

(
E
′

ps −
∑
m

N
′

pmA
′∗
ms

)2

, (9)

and the matrix W is given by

Wmm̃ =
∑
p

(
N
′

pmN
′

pm̃ + λ2δmm̃

)
. (10)

Finally, the maximum a posteriori (MAP) estimates A
′∗
ms can be found by minimizing the expression

in the numerator of equation (7) using standard numerical procedures for ridge regression. ISMARA
performs this calculation by singular value decomposition of the N

′
matrix.

1.7.1 Setting λ through cross-validation

Both the MAP estimates A
′∗
ms, and the matrix Wmm̃ are functions of λ. The constant λ2 represents

the ratio between the a priori expected variance of activities, to the average squared-deviation of the
model from the expression data (which results from both error in the model, noise in the expression
measurements, and biological noise). In general λ will depend on the measurement platform used, i.e.
microarray, RNA-seq, or ChIP-seq, and also on the samples used, because the true variance in motif
activities will depend on the variance in the Eps across the samples. Thus, the appropriate value of λ
will generally not be known in advance and ISMARA therefore includes a method for automatically
setting λ from the data. To determine the optimal λ ISMARA uses a 80/20 cross-validation scheme.
The set of promoters is divided randomly into two sets, with one containing 80% of all promoters (the
‘training set’) and the other the remaining 20% (the ‘test set’). The training set of promoters is used for
fitting the motif activities while the quality of the fit is evaluated on the test set. ISMARA then finds
the value of λ that minimizes the average squared-deviation of the expression levels in the test set from
those predicted by the model. We denote this optimal value of λ by λ∗.

1.7.2 Error bars on motif activities

Apart from the MAP estimates A
′∗
ms ISMARA also determines the uncertainties associated with these

estimates. Since σ in Eq. 8 is not known, we integrate it out with a suitable scale-invariant prior P (σ) ∝
1
σ .
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P
(
A
′

s

∣∣∣ E,N, λ) =

∫ ∞
σ=0

P
(
A
′

s

∣∣∣ E,N, σ, λ)P (σ)dσ

∝
Γ
(
P
2

)[∑
mm̃ (A′ms −A

′∗
ms)Wmm̃

(
A
′
m̃s −A

′∗
m̃s

)
+ χ2

s

]P
2

(11)

∝ exp

−P∑mm̃

(
A
′

ms −A
′∗
ms

)
Wmm̃

(
A
′

m̃s −A
′∗
m̃s

)
2χ2

s

 ,
where the last proportionality is a very good approximation when the number of promoters is large. Note
that this is again a multi-variate Gaussian distribution. The covariance matrix of this Gaussian posterior
distribution is given by:

Cmm̃;s =

(
W−1

)
mm̃

χ2
s

P
(12)

As is well known, given this multi-variation Gaussian form, the marginal distribution for a single motif
activity A

′

ms will be Gaussian distributed with standard-deviations δA
′

ms given by the square root of the
corresponding diagonal term of the covariance matrix, i.e.

δA
′

ms =
√
Cmm;s (13)

We define the overall significance of a motif m as the average squared ratio between fitted activities and
their standard deviations (z-values)

zm =

√√√√ 1

S

∑
s

(
A′∗ms
δA′ms

)2

. (14)

1.7.3 Fitting mean activities

By introducing a promoter-dependent basal expression level cp in equation (3) we effectively ensure that
the average expression of each promoter is accounted for, i.e. only the changes in expression of each
promoter across the samples are fitted by the motif activities A

′

ms. Consequently, the fitted motif activi-
ties all average to zero, i.e.

∑
sA
′

ms = 0. Although, typically, users would indeed be most interested in
explaining expression changes across the samples, in some cases users might also be interested in know-
ing to what extent the absolute average levels of the promoters across the samples can be fit in terms of
‘mean activities’ of the motifs, i.e. to learn which motifs are most predictive of consistently high or low
absolute expression across the replicates.

To fit mean activities we start from equation (3) and set cp = 0 for all promoters p. In addition,
we explicitly write the activity in terms of a sample-dependent part that averages to zero, and a mean
activity, i.e.

Ams = A
′

ms + Ām. (15)

Defining the sample-corrected average expression values as

Ẽp =
1

S

∑
s

(Eps − 〈Es〉) , (16)

and again the motif-normalized site counts N
′

pm = Npm − 〈Nm〉, it is straight-forward to show that the
mean activities Ām are optimized when the expression

χ̃2 =
∑
p

(
Ẽp −

∑
m

N
′

pmĀm

)2

, (17)
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is minimized. We fit the mean activities Ām in exact analogy with the fitting of the activities A
′

ms. We
introduce a separate Gaussian prior for the mean activities Ām, with its own parameter λ̃, and again set
λ̃ using 80/20 cross-validation. We also determine error-bars δĀm on the mean activities Ām. Finally,
we also define z-scores for the mean activities, i.e.

z̃m =
Ām
δĀm

. (18)

Motifs with the highest positive z̃m are the most significant predictors of consistently high expression
across the samples, whereas motifs with highly negative z̃m are the most significant predictors of con-
sistently low expression across the samples.

1.8 Processing of replicates
Careful studies typically involve experimental replicates to account for the part of variability in the
readout which is not under direct experimental control. ISMARA allows users to indicate which sam-
ples correspond to replicates and will automatically calculate averaged motif activities and error bars
across these replicates. To perform this analysis the user should first upload all samples and perform the
standard ISMARA analysis. On the results page ISMARA provides a link to a page where users can
interactively annotate which samples are replicates. In addition, if the replicates came in clearly defined
batches, for example, when a time-course was performed multiple times, then the user can also indicate
this. Once all samples are annotated ISMARA can then perform motif activity averaging across the
replicates. Note that this approach can easily be extended beyond replicates, i.e. the user can arbitrarily
divide the samples into groups and ISMARA will automatically calculate average motif activities and
associated standard-deviations for each group of samples.

Here we describe how activities within a group are averaged. For a given group G of samples and a
particular motif, we assume that its activities As in samples s ∈ G are given by a mean activity Āg plus
some deviation δs, i.e

As = Āg + δs, (19)

where we assume that the prior probability of δs is Gaussian distributed with (unknown) standard-
deviation σg , i.e

P (δs|σg) =
1√

2πσg
exp

[
−1

2

δ2s
σ2
g

]
. (20)

Thus, given the mean activity Āg in the group, the prior probability to have activity As in a particular
sample s from the group is

P (As|Āg, σg) =
1√

2πσg
exp

[
−1

2

(
As − Āg

)2
σ2
g

]
. (21)

Using the input data, ISMARA has inferred the motif activity As to have expected value A∗s with
standard-error δAs for each sample s. That is, once the dependence on all other activities is integrated
out, the probability of the expression data D conditioned on the motif activity As is a Gaussian with
standard-deviation δAs, i.e.

P (D|As) =
1√

2πδAs
exp

[
−1

2

(As −A∗s)
2

(δAs)2

]
. (22)

Using the expressions for P (D|As) and P (As|Āg, σg) we can calculate the probability of the data D
given the mean activity Āg and standard-deviation σt by integrating over all unknown As:

P (D|Āg, σg) =
∏
s∈G

[∫ ∞
−∞

P (D|As)P (As|Āg, σg)dAs
]
. (23)
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These integrals can be performed analytically and we obtain

P (D|Āg, σg) =
∏
s∈G

1√
2π(σ2

g + σ2
s)

exp

[
− (A∗s − Āg)2

2(σ2
g + σ2

s)

]
. (24)

Although, formally, we should integrate this expression over the unknown standard-deviation σg as
well, this integral unfortunately cannot be performed analytically. Therefore, we estimate the integral
simply by finding the value σ∗g that maximizes P (D|Āg, σg). Assuming a uniform prior for the mean
activity Āg of the samples in the group, we then finally obtain an expression for the posterior probability
P (Āg|D) which we characterize by its mean 〈Āg〉 and standard-deviation δĀg . That is, 〈Āg〉 is the
inferred average motif activity for the samples within the group, and δĀg is the error-bar on this average
activity. This mean and error-bar of the activity for the ‘group’ of samples are given by

〈Āg〉 =

∑
s∈G

A∗s
(σ∗g)

2+σ2
s∑

s∈G
1

(σ∗g)
2+σ2

s

, (25)

and

δĀg =

√
1∑

s∈G
1

(σ∗g)
2+σ2

s

. (26)

Finally, we assign significances zm to each motif completely analogously as before, but now averag-
ing over all groups, i.e.

zm =

√√√√ 1

|G|
∑
g

(
〈Āg〉
δĀg

)2

, (27)

where |G| is the number of groups. A motif will have a high significance zm when its motif activities
vary relatively little within each group, and vary by a large amount across groups.

1.9 Target predictions
In order to infer motif activities Ams, ISMARA assumes that all promoters with predicted target sites
for a motif m will respond to changes in motif activity, i.e. in proportion to the predicted number of sites
Npm. This is a reasonable assumption when inferring motif activities, as the activities Ams depend on
the statistics of all promoters with sites for motif m. However, in a given condition or system, it is likely
that only a subset of the promoters with sites for a motif m are in fact regulated by this regulator. This
might be due to a limited accessibility, dependence on particular co-factors, weaker affinity of a site, and
other context-dependent factors. Thus, when we aim to predict individual target promoters of a given
motif m, we not only use the binding site predictions Npm, but also evaluate at which promoters the
activities Ams contribute to explaining the profiles Eps.

To quantify if a given promoter p is targeted by a motif of interest m we first demand that there
exists a TFBS prediction, i.e Npm > 0. Second, we quantify the contribution of m to the fit of the
expression/chromatin state profile Eps. The most rigorous approach to quantifying the effect of motif m
on promoter p is to calculate both the probability of the entire data set, i.e. the profiles Eps across all
promoters and samples, with the original site-count matrix N, and a site-count matrix Ñ where only the
sites for motif m in promoter p are set to zero. To calculate this probability we treat all the unknown
motif activities Ams as well as the standard-deviation σ as nuisance parameters that are integrated out of
the likelihood. That is, we formally want to calculate the ratio of probabilities

Rpm =

∫∞
−∞ dA

∫∞
0

dσP (E|N,A, σ)∫∞
−∞ dA

∫∞
0

dσP (E|Ñ , A, σ)
, (28)
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where the integrals are over all motif activitiesAms, and over the standard-deviations σ. Note that, when
we setNpm = 0 for promoter p and motifm, we make a very small change to the site-count matrix. That
is, as there are tens of thousands of promoters and close to 200 motifs, we are changing only one of the
millions of entries in the matrix. As a consequence, the inferred motif activities A

′∗
ms that result from the

mutated matrix Ñ are generally very close to those that result from the original matrix N . Similarly, the
inverse covariance matrix W of the mutated matrix is also very close to that of the original matrix and,
finally, the optimal values of the constants cp, c̃s, and the prior constant λ∗ will also change very little
under mutation of the matrix. To make the calculation more tractable we will make the approximation
that all these quantities are unchanged upon mutation of the matrix. Under that approximation we have

P (E|A,N, σ, λ∗) ∝ σ−PS exp

−∑s,m,m̃

(
A
′

ms −A
′∗
ms

)
Wmm̃

(
A
′

m̃s −A
′∗
m̃s

)
+
∑
p,s χ

2
ps

2σ2

 ,
(29)

where χ2
ps is the squared-deviation between the observed value E′ps and the predicted value, i.e.

χ2
ps =

(
E
′

ps −
∑
m

N
′

pmA
′∗
ms

)2

. (30)

For the probability of the data with the mutated site-count matrix we have

P (E|A, Ñ, σ, λ∗) = P (E|A,N, σ, λ∗) exp

[
−
∑
s(χ

2
psm − χ2

ps)

2σ2

]
, (31)

where χ2
psm is the squared-deviation for promoter p and sample s when motif m is removed, i.e.

χ2
psm =

(
E
′

ps −
∑
m′

Ñ
′

pm′A
′∗
m′s

)2

. (32)

In this form the integrals over the motif activities and σ can be easily performed and we find for the ratio
of the probabilities

Rpm =

( ∑
p′,s χ

2
p′s∑

p′,s χ
2
p′s −

∑
s(χ

2
psm − χ2

ps)

)S(P−M)

, (33)

where M is the total number of motifs. Since P � M we approximate P − M ≈ P and we find
approximately

Rpm = exp

[∑
s(χ

2
psm − χ2

ps)

〈χ2〉

]
, (34)

where we have defined the average squared-deviation per sample/promoter combination

〈χ2〉 =
1

PS

∑
p,s

χ2
ps, (35)

and made use of the fact that [1− x/(SP )]−SP ≈ ex for large SP .
In the results shown in the web-server we show, for each predicted target, the logarithm of the likeli-

hood ratio, i.e. the score Spm for motif m targeting promoter p is

Spm =

∑
s χ

2
psm − χ2

ps

〈χ2〉
. (36)
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Note that this result has a straightforward interpretation: The difference χ2
psm − χ2

ps is the amount by
which the square deviation between the predicted and observed signal increases when the sites for motif
m are removed from promoter p, and the ratio (χ2

psm − χ2
ps)/〈χ2〉 is the relative increase in square-

deviation, i.e. relative to the average squared-deviation between the predicted and observed signals. The
score Spm is obtained by summing this relative change in χ2 over all samples. By default ISMARA
reports all target promoters for which this score is positive, i.e. where removing the motif from the
promoter reduces the quality of the fit.

1.9.1 Enriched Gene Ontology categories

To analyze whether there are any Gene Ontology categories whose genes are over-represented among the
targets of a motif, we use the “GO::TermFinder” Perl module[26]. The ontology files and associations
between genes and categories were taken from the Gene Ontology (GO) Consortium web-site[27]. As a
set of target genes for motif m we include all genes associated with promoters that have a target score
Spm > 0. For microarray chips we create a background set from all the genes which have probes present
on the microarray, i.e. according to our mappings of the probes (see Expression data processing). For
RNA-seq data we take as a background set all genes associated with promoters which have mapped
reads. In the web results we display all GO categories with a p-value of 0.05 or less. These p-values are
corrected for multiple testing using a simple Bonferroni correction, i.e. multiplied by the number of tests
performed.

1.10 Principal component analysis of the activities explaining chromatin mark
levels

We first performed standard ISMARA analysis on the n = 10 data sets measuring expression and 9
different chromatin marks (ChIP-seq), across S = 8 cell types [28]. For each motif m, and each mark i,
we thus obtained estimated activities Aims.

We performed principal component analysis (PCA) of the expression and chromatin mark levels
across all promoters, separately for each cell type. For a given sample s, let Epi denote the level of
mark i at promoter p (suppressing the label s for notational simplicity). We have here already column
normalized these levels, i.e. ∑

p

Epi = 0, (37)

for all marks i.
Using singular value decomposition, the matrix E = U ·D · V T can be uniquely decomposed into

an orthonormal matrix U (of size P × n), a diagonal positive-semidefinite matrix D (of size n× n), and
an orthonormal matrix V (of size n× n) as:

Epi =

n∑
k=1

UpkDkkVik, (38)

where k denotes the index of each component, the column vectors ~Vk with components Vik contain the
principal components, and D2

kk is the fraction of the variance in the Epi values, i.e.

var(E) =
1

nP

∑
p,i

(Epi)
2
, (39)

that is explained by component k.
The first principal component ~V1, shown in the top panels of Suppl. Fig. 23, is virtually identical in all

cell types and captures approximately 60% of the collective behavior of the expression and 9 chromatin
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marks (8 histone modification and CTCF binding) across promoters in each sample. As discussed in the
main text, this first principal component appears to capture the combination of chromatin mark levels
associated with the general ‘activity’ of a promoter. As a consequence, the effect of a given TF on
a specific chromatin mark is confounded by its effect on general promoter activity and we therefore
decided to subtract it from the activity profiles of all TFs.

For the purpose of removing the first principal component from the motif activities, we will treat
each motif m separately and ignore the covariances in the inferred motif activities, i.e. as we assumed
previously when calculating the error bars on the motif activities in (13). We perform the removal one
sample (cell line) at a time. A careful probabilistic analysis must be performed in order to calculate the
error bars.

Let’s focus on a given motif m in sample s and denote by A the vector of activities across the marks,
i.e. Ai is the activity associated with mark i. In addition, let δAi denote the standard-deviation (error-
bar) of this activity. The posterior distribution P (A|D) of this activity vector given the data is given by
a Gaussian, i.e. as in (12), of the form

P (A|D) ∝ exp

[
−1

2

∑
i

(Ai −A∗i )2

δA2
i

]
, (40)

where A∗i is the MAP estimate of the motif activity of mark i. If we introduce a diagonal matrix con-
taining the inverse of the standard-deviation, we can write this expression in matrix-vector form:

P (A|D) ∝ exp

[
−1

2
(A−A∗)T · diag

(
1

δA2

)
· (A−A∗)

]
, (41)

where A∗ is a n× 1 vector of the MAP estimates and diag
(

1
δA2

)
is a 10× 10 diagonal precision matrix

which elements are set to the inverses of motif activity variances.
Using principal components V of E (38) and their orthonormality V · V T = 1 this distribution can

be rewritten as

P (A|D) ∝ exp

[
−1

2
(A−A∗)T · V · V T · diag

(
1

δA2

)
· V · V T · (A−A∗)

]
. (42)

We can rewrite the activities in the basis of the principal vectors as B ≡ V T · (A − A∗) and the
precision matrix in the same basis as M ≡ V T · diag

(
1
δA2

)
· V . In this basis the probability distribution

takes the form:

P (B|D) ∝ exp

[
−1

2
BT ·M ·B

]
. (43)

Note that in this basis, the inverse covariance matrix M contains off-diagonal terms.
We want to integrate out the activities along the first principal component, therefore we separate

elements of B and M in the following way

B =


b1b2...
bn


 ≡

(
b1
By

)
(44)

M =


m11

(
m12 · · · m1n

)m21

...
mn1


m22 · · · m2n

...
. . .

...
mn2 · · · mnn


 ≡

(
m11 MT

y

My Mw

)
, (45)
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and the last equivalency holds because the matrix M is symmetric.
Using these definitions, eq. (43) can be expanded and rewritten to obtain:

P (B|D) ∝ exp

[
−1

2

(
b21m11 + 2b1B

T
y ·My +BTy ·Mw ·By

)]
(46)

= exp

−1

2

m11

(
b1 +

BTy ·My

m11

)2

+BTy ·Mw ·By −
BTy ·My ·MT

y ·By
m11


Where we reordered terms and completed the square to bring out that this posterior is proportional to a
Gaussian with respect to b1. It is now straightforward to integrate this probability distribution along the
first principal direction:

P (By|D) =

∫ ∞
b1=−∞

P (B|D)db1 ∝ exp

[
−1

2

(
BTy ·Mw ·By −

BTy ·My ·MT
y ·By

m11

)]
·

·
∫ ∞
b1=−∞

exp

−1

2
m11

(
b1 +

BTy ·My

m11

)2
db1 (47)

∝ exp

[
−1

2
BTy ·

(
Mw −

My ·MT
y

m11

)
·By

]
,

The last proportionality holds because the Gaussian integral yields a constant (with respect toBy). Since
the covariance matrix is the inverse of the precision matrix, the covariance matrix W in the reduced
(n− 1)-dimensional space (i.e. without the first principal direction) has the form:

W =

(
Mw −

My ·MT
y

m11

)−1
(48)

Finally, this covariance matrix W needs to be transformed back from the principal component basis
to the original basis. To this end we use the principal components contained in columns 2 through n of
the V matrix. We obtain for the final covariance matrix K in the original basis

Kij =

n∑
k,l=2

VikWklVjl. (49)

The standard deviation of activities of the ith mark is given by square root of the corresponding diagonal
element of this matrix

δÃi =
√
Kii. (50)

The corrected MAP activities are obtained by first defining

B∗ = V T ·A∗, (51)

and then transforming back to the original basis using only the components along principal vectors 2
through n:

Ã =

n∑
k=2

VikB
∗
k . (52)
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The reported z-value of the ith mark (we introduce back the indices for motif m and sample s omitted
previously) is given by

zims =
Ãi

δÃi
(53)

After removing the contribution of the first principal component to the motif activities, we re-
calculated significance z-values zim for each motif m and each mark i (x-axis in the Suppl. Fig. 24)

zim =

√∑
s′

(
zims′

)2
S

. (54)

In addition, we calculated a specificity sim which measures the fraction of the overall significance
that is associated with mark i (y-axis in the Suppl. Fig. 24)

sim =
z2mk∑
k′ z

2
mk′

. (55)

That is, a motif m will be highly specific for mark i if it has a high z-value zim, and low z-values for all
other marks.

2 Fraction of variance explained by the fit
The total variance V in a data set is given by the sum of the squared normalized expression values

V =
1

PS

∑
p,s

(E
′

ps)
2. (56)

After fitting the model, the average squared deviation left unexplained is given by the average of χ2
ps

across all promoters and samples, i.e. as defined by equations (30) and (35). The fraction of the variance
f explained by the fit is thus

f = 1− 〈χ
2〉
V

. (57)

For the data-sets that we analyze in this study, the fraction of explained variance ranges from slightly
less than 2% to almost 17%, with a median of 7.7%. Suppl. Fig. 2 shows a histogram of the fraction of
variance explained across all samples.

For the first data-set, the Illumina Body Map 2, we find that 7.71% of the variance is explained by
the model. To assess the statistical significance of this fraction, we performed 10′000 randomization
experiments in which we randomized the association between promoter expression profilesEps and site-
counts Npm, i.e. we randomly shuffled the rows of the matrix N while leaving the matrix E unchanged.
For each of the 10′000 randomizations, we then fitted the model, including fitting the parameter of the
Gaussian prior through cross-validation so as to maximize the fraction of explained variance on the test-
set. The left panel of Suppl. Fig. 3 shows the distribution of fraction of explained variance f for the
10′000 randomizations. As the figure shows, there is a roughly exponential distribution of f and the
highest observed f was f = 0.0012. If we extent the exponential fit to the distribution of f values in
randomization experiments (right panel of Suppl. Fig. 3) we see that the observed fraction of variance
f = 0.0771 on the unshuffled promoters corresponds roughly to a p-value of 1.3 ∗ 10−235.

19



Supplementary Figure 2: Histogram of the fraction of variance explained for all the gene expression
samples analyzed in this study (data-sets 1 through 5 and data-set 6.1).

Supplementary Figure 3: Left panel: Reverse-cumulative distribution of the fraction of explained vari-
ance f on the Illumina Body Map 2 data-set on 10′000 randomizations between promoter expression
and site-counts (solid line). The dashed line shows an exponential fit. Right panel: The exponential fit
of the left panel extended to the observed fraction of explained variance (f = 0.0771, red dot) of the
original, i.e. non-randomized, data-set. The estimated p-value of the observed fraction of variance is
approximately 1.3 ∗ 10−235.
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3 Overview of results presented in the web-interface
To illustrate the results that ISMARA provides, we here present a number of figure that show examples
of results on the RNA-seq data of the Illumina Body Map 2 [29]. Note that almost all of these figures are
screen shots from the actual web-interface. All the full results for the Illumina Body Map are available
at http://ismara.unibas.ch/supp/dataset1_IBM/ismara_report/.

The main page of results that ISMARA provides for a given data set centers around a list of motifs,
sorted by their significance, showing for each motif its significance, the associated TFs, a sequence logo
of the motif, and a thumbnail image of its inferred activity across the samples. Supplementary Fig. 4
shows an excerpt from this list of motifs.

Supplementary Figure 4: Fragment of the list of regulatory motifs sorted by their significance (z-score).
The motifs are sorted from top to bottom. Shown for each motif are, from left to right, the name of the
motif (which is a link to a separate page with results for the motif), its z-score, a list of associated TFs
(links to NCBI pages for these genes), a thumbnail of the inferred motif activity profile, and the sequence
logo of the motif.

Each motif name in this list is in fact a link to a separate page with much more extensive results for
the motif. Among these more extensive results is, first of all, a figure showing the inferred motif activity
(and error bars) across all samples, where the samples are ordered according from left to right, according
to the user’s input.

Supplementary Fig. 5 shows the activity profile of the HNF1A motif across the Illumina Body Map 2
samples. Note that such a lexicographic ordering of motif activities across samples is especially helpful
when the samples come from a time course, in which case the graph shows the motif activity across time.

However, in many cases, including the Illumina Body Map analyzed here, there is no preferred
natural ordering of the samples. In those cases it is more natural to present the motif activities with
samples sorted from those in which the motif is most significantly upregulated, to those where it is most
significantly downregulated. ISMARA provides such a list of motif z-values, with samples sorted from
largest to smallest z-value, as shown in Suppl. Fig. 6 for the HNF1A motif. In this case, HNF1A activity
is highly specific to liver and kidney.

For many of the motifs incorporated into the ISMARA analysis, there is more than one TF that can
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Supplementary Figure 5: Inferred activities of the HNF1A motif on the tissues of the Illumina Body
Map 2. The samples are ordered, from left to right, in lexicographic order, according to sample names
input by the user. Note that this causes the two replicate samples from the same tissue to appear next to
each other. The red circles show the estimated activities A∗ms and the error-bars δAms are shown as red
vertical bars. Samples names are indicated on the bottom.
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Supplementary Figure 6: Sorted list of z-values for the HNF1A motif across all samples of the Illumina
Body Map 2. Note that the replicate samples from liver and kidney have much higher z-value then all
other samples.
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potentially bind to sites for the motif. As a consequence, it is not always clear which individual TFs
are responsible for the observed motif activity in a particular system. To help determine which TFs are
most likely involved in the activity of a given motif, ISMARA provides an analysis of the correlation of
motif activity and mRNA expression of the associated TFs. In particular, a table is provided showing the
Pearson correlation between the motif’s activity profile and the mRNA expression profiles of each of the
TFs that can bind to the sites of the motif. The TFs in the list are sorted by their p-value. Supplementary
Fig. 7 shows the list of correlations for the POU2F TFs.

Supplementary Figure 7: Correlations between the HNF1A motif activity and mRNA expression profiles
of TFs that can bind to sites of the motif. The table shows the names of the associated TF genes, the
IDs of the associated promoters of these genes, the Pearson correlation coefficient, the p-value for the
correlation, and a link to a figure showing a scatter of the motif activity and mRNA expression levels
across the samples (Suppl. Fig. 8) below.

For each of the correlations a link is also provided to a scatter plot showing the mRNA expression
levels and motif activities across the samples. Supplementary Fig. 8 shows example scatter plots for the
TFs POU2F1, POU2F2, and POU2F3. Note that only POU2F2’s expression is significantly correlated
with the motif activity, suggesting that it is this TF that is mainly responsible for the motif activity in
these samples. In addition, the fact that the TF’s mRNA expression correlates positively with motif
activity strongly suggests that this TF act as an activator, i.e. as its mRNA levels go up, the expression
of target genes is affected positively.

To show an example of the opposite behavior, Suppl. Fig. 9 shows the mRNA expression levels of
the TF ZHX2 against its inferred motif activities across the Illumina Body Map 2 samples. The clear
negative correlation strongly suggests that ZHX2 acts as a repressor of its targets, and this matches what
has been reported in the literature [30].

Supplementary Figure 8: Example scatter plots showing the correlations between HNF1A motif activity
and the mRNA expression of POU2F2 left panel), POU2F1 (middle panel), and POU2F3 (right panel)
TFs, across the samples of the Illumina Body Map 2. Each dot corresponds to one sample. The estimated
expression levels correspond to the log2 of the number of mRNAs per million mRNAs. At the top of the
panel the Pearson correlation coefficient ρ and the ID of the promoter are shown.

The next important information provided for each motif, is a predicted list of target promoters. IS-
MARA provides the target promoters p for a motif m sorted by their target score Spm (see section 1.9).
As an example, the list of top targets for the HNF1A motif is shown in Suppl. Fig. 10. Each row in
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Supplementary Figure 9: Scatter plots showing the correlation between the ADNP IRX SIX ZHX motif
activity and the mRNA expression of the ZHX2 TF, across the samples of the Illumina Body Map 2.
Each dot corresponds to one sample. The expression levels are shown on a logarithmic scale. At the top
of the panel the Pearson correlation coefficient ρ and the ID of the promoter are shown.

the table corresponds to one target promoter and information shown includes the promoter ID, its score
Spm, associated transcripts and Entrez gene symbol, and the gene’s name. Note that all these pieces of
information are links that take the user to additional information on the promoter, the associated tran-
scripts, and the gene. To keep the page easily viewable, by default only the top 20 targets are shown.
However, the user can interactively change the number of targets shown in the list. In addition, a search
box allows the user to search whether a particular promoter, transcript, or gene of interest occurs within
the full list of targets.

Of particular interest is the additional information provided about each promoter, through the links
with the promoter IDs. Following this link takes the user to the genome browser of our SwissRegulon
database [31], showing the section containing the proximal promoter region (500 base pairs up-stream
and down-stream of the major TSS of the promoter). In this browser the user is shown all the predicted
TFBSs that are used by ISMARA in its modeling of expression or ChIP-seq data. This thus allows the
user to determine the precise locations of the TFBSs on the genome, through which a particular TF is
predicted to target a given promoter. Supplementary Fig. 11 shows, as an example, the promoter of the
Albumin gene, which is the among the top 10 targets of HNF1A and is in fact a well-known target gene
of HNF1A.

Beyond a list of individual targets, a user would typically like to gain some intuition of the pathways
and particular biological processes that are targeted by a particular motif. One way of visualizing the
functional structure of the predicted targets of a motif, is to represent these as a network, with links
between pairs of genes that are known to be functionally related. The STRING database [32] maintains
a curated collection of functional links between proteins, where ‘functional link’ can range from direct
physical interaction, to over-representation of the protein pair within abstracts of scientific articles. For
any set of proteins, STRING provides visualizations of the network of known functional interactions
between these proteins, which visually brings out groups of proteins known to be functionally related.
ISMARA provides such a STRING network picture for the targets of each motif (for visibility at most
the top 200 targets are shown). Supplementary Fig. 12 shows the STRING network for the predicted
targets of HNF1A. Note that the picture is itself a link to the STRING database, where the figure is
interactive and allows the user more detailed information on each of the proteins in the network and each
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Supplementary Figure 10: Top target promoters of the HNF1A motif for the Illumina Body Map 2.
Targets are sorted by the log-likelihood score Spm. Shown for each target promoter are the promoter ID
(a link to the SwissRegulon web-browser page showing the promoter on the genome), the target score
Spm, associated RefSeq transcripts, associated gene symbols (links to NCBI pages), and gene names
(which typically provide a short description of the gene’s function). By default the top 20 targets are
shown, but this can be changed using the drop-down menu at the top of the table. A search box allows
users to search for genes or transcripts within the entire target list.
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Supplementary Figure 11: Example of a promoter region as displayed in the SwissRegulon genome
browser. The region shown corresponds to the proximal promoter of the Albumin gene (the 7th highest
target of the HNF1A motif) and this is the region that will be displayed when following the link to the
promoter displayed in Suppl. Fig. 10. The genome browser shows the RefSeq transcript, the promoter,
the associated annotated transcript start cluster (TSC) based on the CAGE data, and all the predicted
TFBSs. Here the intensity of the color indicates the posterior probability assigned to each site, and the
name of the cognate motif is written above each side. The arrows inside the TFBSs indicate on which
strand the motif occurs. Note that an HNF1A site occurs just upstream of the TSC.
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functional link between the proteins.
Apart from the STRING network, ISMARA also provides list of Gene Ontology categories that are

enriched among the predicted targets of a motif. Lists are provided for the ‘biological process’, ‘cellular
component’, and ‘molecular function’ hierarchies. A p-value for enrichment is calculated using a simple
hypergeometric test and only categories with a p-value below 0.05 are shown. The categories can be
sorted either by the fold-enrichment of targets relative to what would be expected by chance or by the p-
value of the enrichment. As an example, Suppl. Fig. 13 shows the most significantly enriched categories
of the biological process hierarchy for the HNF1A motif.

One of our our aims is to understand the causal structure of the transcription regulatory network, and
a first step in that direction are predictions of direct regulatory interactions between the motifs. For each
motif, we check its list of predicted targets for promoters of TFs that are associated with other motifs.
Using this we build a regulatory network where nodes correspond to motifs and a directed edge from
motif m to motif m′ occurs whenever a promoter of at least one of the TFs associated with motif m′ is a
predicted target of motif m. On the page with results of a given motif, a part of this regulatory network
centered around the motif in question is shown, i.e. all edges from or to the motif in question as well
as edges between the direct neighbors of the motif. Supplementary Fig. 14 shows the most significant
interactions of this network for the HNF1A motif. Note that a slider on the left-hand side of the network
allows the user to vary a cut-off on the target score Spm, i.e. showing only nodes and edges over the
cut-off. In addition, placing the mouse pointer over a node brings up a pop-up with the z-value of the
motif, and placing the mouse pointer on an edge will bring up a pop-up with the target score of the link.

Note that ISMARA predicts that HNF1A targets HNF4A, FOXA2, NR5A2, and its own promoter.
In addition, HNF4A and FOXA2 are predicted to target the HNF1A promoter as well. A literature
search shows that, in fact, all these direct regulatory interactions have independent experimental support
[33, 34, 35, 36, 37, 38], demonstrating that the top predicted direct regulatory interactions between
regulators can be highly accurate.

Finally, as described in section 1.7.3, we also fit the average expression level Ẽp of each promoter
in terms of mean motif activities Ām. For each motif, a z-score z̃m quantifies the significance of the
motif in explaining the mean expression level of the promoter, i.e. highly positive z̃m indicates that
the occurrence of the motif is predictive for a high average expression level of the promoter, whereas a
highly negative z̃m indicates that the occurrence of the motif is predictive for low average expression of
the promoter.
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Supplementary Figure 12: Network of target genes of the HNF1A motif as displayed by the STRING
database [32]. Each node corresponds to a predicted target gene of the HNF1A motif (in the Illumina
Body Map 2, i.e. data set 1). Links are drawn by STRING whenever there is any evidence that the two
genes may interact or be functionally linked, where evidence may range from measured direct protein-
protein interaction to significant co-occurrence of the gene names within abstracts of articles.
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Supplementary Figure 13: Top over-represented categories from the Gene Ontology hierarchy of bio-
logical processes among the predicted targets of the HNF1A motif. The categories are sorted by the
significance of their enrichment (second column), and the first column shows the fold-enrichment rel-
ative to random expectation. The third and fourth columns in the table show the GO identifier and a
description of the categories and these are again links to pages with more extensive information on the
GO category. Finally, the user can interactively change the number of top categories shown using the
drop-down menu or search for keywords.

Supplementary Figure 14: The top predicted direct regulatory interactions between HNF1A and other
motifs. An edge from motif m to m′ is drawn whenever a promoter p, associated with motif m′, is a
predicted target of motif m, with target score Spm larger than a given cut-off c. In the web browser, the
user can interactively change the cut-off c using the slider on the left of the figure. In this example the
cut-off was set at 7.195. When the cursor is placed on an edge the target score Spm is shown, e.g. in
this example the score of HNF1A targeting the NR5A2 promoter is shown. The intensity of the color
of each motif corresponds to its z-score. Finally, only the direct network neighborhood of the motif in
question (HNF1A) is shown, i.e. edges that are directly linked to HNF1A, or that link between motifs
that directly link to HNF1A.
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Supplementary Figure 15: Regulatory motifs most predictive for high or low average absolute expression
across the IBM2 samples. For each promoter an average expression was calculated and for each motif
m a mean activity Ām (red bar), and its standard-error δĀm (error-bar) was calculated. The z-value of
a motif’s mean activity is defined as the ratio z̃m = Ām/δĀm and the table shows the motifs with the
most positive and most negative z-values.
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4 Reproducibility of motif activities
The inferred motif activities depend both on our binding site predictions, and on the assumed simple
linear relationship between predicted numbers of sites and mRNA expression. As explained in the main
text, there are many reasons why such a ‘cartoon’ model is very unlikely to produce an accurate quan-
titative model of genome-wide expression profiles. As a consequence, one may wonder how robust the
inferred motif activities are. However, as shown in Suppl. Fig. 16, the motif activities inferred from
the two replicates of the human GNF atlas are typically more reproducible across these replicates than
the expression levels of the individual promoters which are used to infer the motif activities. The reason
for this is that the motif activity is inferred from the behavior of the hundreds to thousands of predicted
targets of the motif. Thus, although at each individual promoter the expression is likely a complex func-
tion of the regulatory sites and the linear model is likely a poor approximation, these complications are
effectively averaged out when inferring motif activities from the joint behavior of all targets.

Supplementary Figure 16: Reproducibility of the inferred motif activities and the expression profiles of
promoters. For each motif, and each promoter, we calculated the Pearson correlation coefficient of the
activity/expression profiles for the two replicates of the samples in the human GNF atlas [39]. The figure
shows the distribution of observed correlation coefficients for the motif activities (red) and promoter
expression profiles (blue). The motif activities are generally considerably more reproducible than the
expression profiles of the promoters from which they are inferred.

5 Motifs dis-regulated in tumor cells
To identify motifs whose motif activities are consistently dis-regulated in tumors, we first separated all
samples s from the GNF and NCI-60 data sets into the set of tumor samples T and non-tumor samples
N . Next, we used the replicate averaging described in section 1.8 to calculate, for each motif, an average
activity 〈ĀT 〉 in tumor samples, an associated error-bar δĀT , an average activity in non-tumor samples
〈ĀN 〉, and an error-bar δĀN associated with the average activity in non-tumor samples. From these, we
calculate a z-value zm for each motif m that quantifies the significance of the difference in the average
activities in tumor and non-tumor samples. Tables 2 and 3 show the motifs with highest and lowest
z-values, respectively. That is, these are the motifs most significantly dis-regulated in tumor cells.
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Motif z-values
blah family.p2 2.398858

HIF1A.p2 2.230493
E2F1..5.p2 2.140652

ARNT ARNT2 BHLHB2 MAX MYC USF1.p2 2.071274
BPTF.p2 1.977484

NFY{A,B,C}.p2 1.920594
FOXD3.p2 1.915846
TFDP1.p2 1.901083

ELF1,2,4.p2 1.874818
ZNF143.p2 1.802732

ATF4.p2 1.786143
YY1.p2 1.735238
EHF.p2 1.718308

NRF1.p2 1.674024
ELK1,4 GABP{A,B1}.p3 1.667680
CCUUCAU (hsa-miR-205) 1.525379

PAX5.p2 1.500615
UCAAGUA (hsa-miR-26a, hsa-miR-26b, hsa-miR-1297, hsa-miR-4465) 1.404557

BACH2.p2 1.371868
GUAACAG (hsa-miR-194) 1.349047

HES1.p2 1.317505

Supplementary Table 2: Motifs that are most consistently upregulated in tumor samples of the NCI-60
and GNF data sets, relative to healthy (non-tumor) tissues in the GNF data set. The motifs are sorted by
their z-value (shown in the second column).

Many of the TFs that ISMARA identifies as disregulated in cancer are well-known in cancer biology,
including HIF1A[40] (Suppl. Fig. 17), MYC[41], E2F1..5[42], NF-Y[43], YY1[44], TFCP2[45], and
the SMAD TFs[46]. However, our brief survey of the literature also suggests that several other TFs that
ISMARA identifies as consistently disregulated in cancers are currently not recognized as major players
in cancer biology, although there is some evidence in the literature that these TFs may play a role in
cancer. These TFs include HAND1,2[47], KLF12[48], BPTF[49], FOXD3[50], and ZNF143[51].

ISMARA also identifies a number of miRNAs whose targets are either consistently upregulated in
tumors, e.g. hsa-miR-205 (Suppl. Fig. 17) and hsa-miR-26, or consistently down-regulated, e.g. hsa-
miR-24 and the hsa-miR-17/93/106 seed family. Indeed, multiple studies have found hsa-miR-205 to be
down-regulated in a number of different cancers, and hsa-miR-205 has been shown to have tumor sup-
pressor function[52, 53, 54, 55, 56]. It has also been shown that hsa-miR-26a delivery suppresses hepatic
tumors in mouse[57], supporting the downregulation of this miRNA in cancer. Conversely, hsa-miR-17
is a known oncogene[58], consistent with the downregulation of its targets in cancer. The literature on
hsa-miR-24 function in cancer is more ambiguous[59]. Some evidence has been provided that hsa-miR-
24 acts as repressor of apoptosis and is upregulated in certain cancers[60]. On the other hand, another
study found that hsa-miR-24 can inhibit proliferation[61]. Notably, the latter study suggested that hsa-
miR-24 acts through seedless target sites, which by construction are not detected by TargetScan. In
summary, in this system ISMARA successfully identified oncogenes and tumor suppressors ab initio.

6 Example of species-specific targeting
The MotEvo algorithm that we use for predicting TFBSs in all promoters operates on multiple alignments
and incorporates information on binding site conservation using an explicit model of TFBS evolution.
This does not mean, however, that MotEvo only predicts binding sites that are well-conserved across
orthologous promoters in mammals. Although evidence of conservation increases the posterior proba-
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Motif z-values
SMAD1..7,9.p2 -2.194113

HAND1,2.p2 -2.185943
TGIF1.p2 -2.117814
MAZ.p2 -2.076224

TFCP2.p2 -2.071225
KLF12.p2 -1.958392

GGCUCAG (hsa-miR-24) -1.918863
FOX{D1,D2}.p2 -1.839199

TBX4,5.p2 -1.805228
FOXP3.p2 -1.740035
EVI1.p2 -1.701934

HBP1 HMGB SSRP1 UBTF.p2 -1.688854
AAAGUGC (hsa-miR-17, hsa-miR-20a, hsa-miR-20b, hsa-miR-93, hsa-miR-106a, hsa-miR-106b, hsa-miR-519d) -1.628037

GAGAUGA (hsa-miR-143, hsa-miR-4770) -1.619611
HIC1.p2 -1.607936

NANOG{mouse}.p2 -1.576193
FEV.p2 -1.574951

MYOD1.p2 -1.565920
NR1H4.p2 -1.562673
POU1F1.p2 -1.556216

TCF4 dimer.p2 -1.536692
MYFfamily.p2 -1.514719

TAL1 TCF{3,4,12}.p2 -1.499900
POU5F1.p2 -1.480033
NR3C1.p2 -1.473553

HOX{A5,B5}.p2 -1.440485
STAT1,3.p3 -1.417964

GTF2A1,2.p2 -1.416557
RORA.p2 -1.391819

CAGCAGG (hsa-miR-214, hsa-miR-761, hsa-miR-3619-5p) -1.356781
ETS1,2.p2 -1.337667
EN1,2.p2 -1.337051

AR.p2 -1.330996
RREB1.p2 -1.330444

CUCCCAA (hsa-miR-150) -1.318296
CACAGUG (hsa-miR-128) -1.318135

JUN.p2 -1.313498

Supplementary Table 3: Motifs that are most consistently down-regulated in tumor samples of the NCI-
60 and GNF data sets, relative to healthy (non-tumor) tissues in the GNF data set. The motifs are sorted
by their z-value (shown in the second column).
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HIF1A hsa-miR-205

Supplementary Figure 17: Motif activities (with error-bars) across the human GNF and NCI-60 samples
for an example TF (HIF1A, left panel) and miRNA motif (hsa-miR-205, right panel) that are disregulated
in cancer. Note that different subsets of samples are colored differently as indicated in the legend.

bility assigned to a given TFBS, species-specific TFBSs that are predicted to have high-affinity for the
regulator can also attain high posterior probability. Consequently, ISMARA will typically also identify
targets that are species-specific or specific to a subclade of closely-related species, e.g. primate-specific
targets. An example of a primate-specific target is ISMARA’s prediction that, in the innate immune re-
sponse time course in HUVEC cells, the IRF motif targets the promoter of the ATF5 transcription factor.
As shown in Suppl. Fig. 18, the corresponding TFBS for IRF in the ATF5 promoter is primate-specific,
i.e. only conserved in Rhesus Macaque.

7 Validation of predicted NFκB targets using ChIP-seq data
To assess the accuracy of the genome-wide targets that ISMARA predicts we compared the predicted
targets of NFκB in the innate immune response time course in which HUVEC cells were treated with
TNFα with NFκB targets based on ChIP-seq experiments.

We collected data on NFκB binding sites in 10 lymphoblastoid cell lines derived from 10 differ-
ent individuals of African, European, and Asian ancestry [62]. From this study we obtained predicted
peaks for 33 ChIP-seq samples (10 different individuals with between 2 and 5 replicates per individual),
with each peak’s significance quantified by a z-value. Because ISMARA’s predictions are exclusively
associated with promoters, we focused on ChIP-seq peaks associated with each of the promoters in our
promoter set. For each human promoter, and each of the 33 ChIP-seq data-sets, we calculated a bind-
ing score by summing the z-values of all peaks whose center fall within 1 kilobase of the center of the
promoter. Then, for each human promoter, we calculated a final binding score by averaging the binding
scores across the 33 ChIP-seq data-sets. Using a cut-off score of z = 4.5, a little over 8% of promoters
(2969 of 35821) are then classified as showing significant evidence of binding.

There we 2636 promoters that had a predicted regulatory site for NFκB. Sorting these 2636 human
promoters by their ISMARA target score for NFκB, we then calculated the fraction of the top 50, 100,
150, 200, 250, 300, 350, 400, 450, and 500 targets that show binding according to the ChIP-seq data (red
line in Fig. 19). Almost two-thirds of the top 50 targets are validated by ChIP-seq binding, more than
half of the top 150 targets, and about 40% of the top 300 targets.

To compare this validation of predicted targets with the reproducibility of the ChIP-seq data them-
selves across replicates and individuals, we ‘validated’ the binding promoters as measured by each ChIP-
seq data-set by the average of all other ChIP-seq data-sets. Specifically, for each ChIP-seq data-set, we
sorted all promoters by its binding score, and then calculated what fraction of top targets have an average
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Supplementary Figure 18: Example of a primate-specific target prediction of ISMARA. ISMARA pre-
dicts that the IRF motif targets the ATF5 promoter in the innate immune response time course of HUVEC
cells. Left panel: Close-up of the predicted TFBSs in the ATF5 promoter, as displayed in the Swiss-
Regulon genome browser [31]. The predicted IRF site occurs roughly 60 base pairs downstream of the
promoter. Right panel: Detailed information on the IRF site in the ATF5 promoter. Besides human, an
orthologous IRF site is only found in Rhesus Macaque. However, because of the site’s strong match to
the IRF motif, the site is still assigned a high posterior probability.
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Supplementary Figure 19: Validation of ISMARA’s predicted NFκB targets from the innate immune
response time course in HUVEC cells using ChIP-seq data from lymphoblastoid cell lines in 10 different
individuals [62]. The red line shows the percentage of top predicted target promoters that have a ChIP-
seq binding peak as a function of the number of top predicted promoters. The box-plot indicates the
variation in ChIP-seq binding across samples from the different individuals. In particular, for each of
33 ChIP-seq samples, its target promoters are ‘validated’ by comparison with the other 32 ChIP-seq
samples exactly in the same way as for the ISMARA targets. The box-plot shows the 5, 25, 50, 75, and
95 percentiles of the distribution of percentages of validated targets across the 33 samples.

binding score over the cut-off according to all other ChIP-seq data-sets. Doing this for all 33 samples
we obtained a distribution of the fraction of validated top x targets and calculated median, inter-quartile
range, and 5 and 95 percentile for each value of x ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}
(the box-whisker plots in Suppl. Fig. 19). We observed that the validation rate for ChIP-seq targets is
higher, i.e. typically between 60 and 70 percent, than for the ISMARA targets. To some extent this may
result from the fact that all ChIP-seq data were obtained in the same cell type, which was different from
the HUVEC cells used in the innate immune response time course. However, there was considerable
variability in the validation rates of ChIP-seq samples, and some samples had lower validation rates than
ISMARA targets. This result shows that the accuracy of ISMARA’s target predictions are comparable to
targets obtained through ChIP-seq.

8 XBP1 motif activity and mRNA expression
The XPB1 motif is the third most significant motif in the innate immune response time course in which
HUVEC cells were treated with TNFα. The motif is upregulated during the time course. However, as
shown in Suppl. Fig. 20, the mRNA expression of the XPB1 gene is almost constant across the time
course, and not significantly correlated with the motif’s activity. In fact, it has been established that
XBP1’s activity is regulated post-transcriptionally, i.e. through alternative splicing [63, 64].
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Supplementary Figure 20: Scatter plot showing the correlation between the inferred activity of the XBP1
motif and the mRNA expression of the XBP1 gene for the innate immune response time course. The
mRNA expression is shown on a logarithmic scale (base 2) along the vertical axis. Note the small range
in expression variation.

9 Epithelial-Mesenchymal Transition: including microRNAs in core
regulatory networks

To illustrate ISMARA’s ability to integrate the role of both TFs and miRNAs in the gene regulatory net-
work, we took advantage of data from a system in which miRNAs are known to play important regulatory
roles: the epithelial-to-mesenchymal transition (EMT). Recently, mRNA expression measurements were
performed in duplicate on epithelial and 3 independently-isolated mesenchymal subpopulations within
immortalized mammary epithelial cells[65]. After running ISMARA on this data (results at http:
//ismara.unibas.ch/supp/dataset5/ismara_report/), we used replicate-averaging to
identify regulators that most consistently and significantly explain the mRNA expression differences be-
tween epithelial and mesenchymal cells (results at http://ismara.unibas.ch/supp/dataset5/
averaged_report/).

Remarkably, much of what is known about EMT (reviewed by Polyak and Weinberg[66]) is inferred
automatically by ISMARA using only the gene expression data. In particular, among the top regulators
that ISMARA infers in this system are SNAI1..3, ZEB1, and a family of miRNAs consisting of hsa-miR-
141 and hsa-miR-200a (sharing the same seed sequence), that have been shown to form a regulatory
network essential for EMT. The predicted activity changes of these regulators are consistent with the
extant literature. Namely, the decrease in SNAI1..3 and ZEB1 activity (which indicates a reduced level
of their predicted targets) in mesenchymal subpopulations is consistent with the fact that both of them
are mainly acting as repressors and are transcriptionally up-regulated in the mesenchymal state. The hsa-
miR-141 and hsa-miR-200a miRNAs are known to be down-regulated in the mesenchymal state, causing
the mRNA levels of their targets to increase, which matches the positive change in activity predicted
by ISMARA. Known regulatory interactions between these factors are also uncovered by ISMARA.
For instance, ZEB1 is the top predicted target of the hsa-miR-141/200a miRNAs and existing literature
confirms that the direct regulation of ZEB1 by hsa-miR-200 is critical in EMT[67, 68, 69]. Similarly,
promoters of E-cadherin (CDH1) gene are the 3rd and 4th top target promoters of the ZEB1 and SNAI1..3
motifs, respectively, and indeed this gene is an epithelial marker known to be targeted by both SNAIL
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Cell Description
GM12878 B-lymphocyte, lymphoblastoid

HepG2 hepatocellular carcinoma
HMEC mammary epithelial cells
HSMM skeletal muscle myoblasts
Huvec umbilical vein endothelial cells
K562 chronic myelogenous leukemia

NHEK epidermal keratinocytes
NHLF lung fibroblasts

Supplementary Table 4: Human tissues and cell lines used as the source of experimental material in the
ENCODE data sets for which we analyzed ChIP-seq data of chromatin marks. We used all available
samples for which a consistent measurement platform was used.

transcription factors[70] and by ZEB1[71]. These key predictions by ISMARA are summarized in Fig.
21.

SNAI1..3ZEB1

miR-141 /
miR-200a

miR-125a
miR-125b
miR-4319

-12 +12

motif activity z-value
CDH1

Supplementary Figure 21: Core TF and miRNA regulatory interactions in the epithelial-to-mesenchymal
transition, as predicted by ISMARA. Each rectangular node corresponds to a regulatory motif with its
color indicating the significance of the change in activity when going from the epithelial to mesenchymal
state (z-value defined as z = (Am,mes − Am,epi)/

√
δA2

m,mes + δA2
m,epi). Green/Red indicates targets

of the motif are down/up-regulated in the mesenchymal state. Both Zeb1 and Snail are predicted to target
the E-cadherin (CDH1) promoter. Note that all interactions shown are repressive.

The activity of the family containing the hsa-miR-125a/b and hsa-miR-4319 miRNAs is the most sig-
nificantly reduced miRNA family in EMT. This suggests that these miRNAs play a role in mesenchymal
cells, consistent with observations that hsa-miR-125b promotes invasive tumor characteristics[72].

10 Analysis of the ENCODE ChIP-seq data
To illustrate ISMARA’s performance on ChIP-seq data we used data from the ENCODE Project in which
expression and 9 different chromatin modifications were measured across 8 different cell types[28].
Supplementary table 4 shows the list of cell types used together with their description and Suppl. table
5 shows a list of all the signals that were measured. For simplicity, we will refer to all 10 signals (which
include expression and the binding of the CTCF transcription factor) as ‘marks’ in our description below.
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Profiling Platform
expression Affymetrix HT Human Genome U133A Array
H3K4me3 Illumina Genome Analyzer II
H3K27me3 Illumina Genome Analyzer II
H3K27ac Illumina Genome Analyzer II
H3K9ac Illumina Genome Analyzer II

H3K36me3 Illumina Genome Analyzer II
H3K4me1 Illumina Genome Analyzer II

CTCF Illumina Genome Analyzer II
H3K4me2 Illumina Genome Analyzer II
H4K20me1 Illumina Genome Analyzer II

Supplementary Table 5: List of the signals (i.e. expression, histone modifications, and the binding
of one TF) and corresponding measurement platforms from the ENCODE data sets, that we used to
demonstrate ISMARA’s performance on ChIP-seq data sets. We used available BED and CEL files from
the GSE26386 and GSE26312 GEO series.

Data Set ISMARA URL
Illumina body map 2 ismara.unibas.ch/supp/dataset1 IBM/ismara report

GNF SymAtlas + NCI-60 cancer cell lines, human [39, 73] ismara.unibas.ch/supp/dataset2/ismara report
Inflammatory response time course, HUVEC [74] ismara.unibas.ch/supp/dataset3/ismara report

Mucociliary differentiation, bronchial epithelial cells, human [75] ismara.unibas.ch/supp/dataset4/ismara report
Epithelial-Mesenchymal Transition, human [65] ismara.unibas.ch/supp/dataset5/ismara report

ENCODE cell lines, expression [28] ismara.unibas.ch/supp/dataset6.1 ENCODE expression/ismara report
ENCODE cell lines, H3K4me3 [28] ismara.unibas.ch/supp/dataset6.2 ENCODE H3K4me3/ismara report

ENCODE cell lines, H3K27me3 [28] ismara.unibas.ch/supp/dataset6.3 ENCODE H3K27me3/ismara report
ENCODE cell lines, H3K27ac [28] ismara.unibas.ch/supp/dataset6.4 ENCODE H3K27ac/ismara report
ENCODE cell lines, H3K9ac [28] ismara.unibas.ch/supp/dataset6.5 ENCODE H3K9ac/ismara report

ENCODE cell lines, H3K36me3 [28] ismara.unibas.ch/supp/dataset6.6 ENCODE H3K36me3/ismara report
ENCODE cell lines, H3K4me1 [28] ismara.unibas.ch/supp/dataset6.7 ENCODE H3K4me1/ismara report

ENCODE cell lines, CTCF [28] ismara.unibas.ch/supp/dataset6.8 ENCODE CTCF/ismara report
ENCODE cell lines, H3K4me2 [28] ismara.unibas.ch/supp/dataset6.9 ENCODE H3K4me2/ismara report

ENCODE cell lines, H4K20me1 [28] ismara.unibas.ch/supp/dataset6.10 ENCODE H4K20me1/ismara report

Supplementary Table 6: URLs with the results of ISMARA’s analyses of the data sets discussed in this
paper.

We first ran ISMARA separately on the data sets for each of the 10 signals. For all the ChIP-seq data
we thus modeled the occurrence of each of the marks at promoters in terms of the predicted TFBSs at
the promoters. Supplementary table 6 lists all the data sets that were analyzed in this paper and shows,
including references to the original publications, and lists for each data set the URL at which ISMARA’s
results for the corresponding data set can be found. Note that, for data sets 1, 2, and 5, there are also
replicate averaged results available. These can be found by replacing ‘ismara report’ at the end of the
URL with ‘averaged report’.

10.1 PCA analysis
We first performed principal component analysis of the 10 marks across all promoters genome-wide,
separately for each of the 8 cell types, as described in section 1.10. As shown in Suppl. Fig. 23, we
find that the first principal component explains approximately 60% of the variation in each of the 8
cell types. In addition, the first principal component is almost identical in each of the cell types. This
strongly suggests that this first principal component is a general feature of the distribution of chromatin
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marks. Moreover, the fact that this component aligns positively with expression and activity-associated
chromatin marks, suggests that this first component reflects general promoter activity. We then pooled
the data from all samples and performed principal component analysis on this complete data set, i.e.
treating each promoter sample combination (p, s) as if it were a separate promoter. The resulting first
principal component is shown in Fig. 6B of the main article.

Next, as described in section 1.10, we took the inferred motif activities for all marks and removed the
component along the first principal component. That is, we removed the contribution to the motif activi-
ties that comes from the general ‘promoter activity’. As an illustration, Suppl. Fig. 22 shows the inferred
motif activities for 5 motifs (SNAI, IRF, HNF4a NR2F1, TEAD1, and GATA6) both before (left panels)
and after (right panels) the contribution from general promoter activity has been removed, for expression
and the activation associated marks H3K4me3, H3K4me2, H3K9ac, H3K27ac, and H3K36me3. As the
figure shows, before removal of the first PCA component, the activities for all marks are highly corre-
lated, but this correlation disappears when the first PCA component is removed. This confirms that the
highly correlated motif activities and the activation-associated chromatin marks is accounted for by the
first PCA component that captures the relative chromatin mark levels associated with the general activity
of a promoter. The remaining activities (right panels) thus provide a clearer insight in the specific role
of a motif for specific marks across the cell-types. For example, for the SNAI motif the two acetyla-
tion marks are highly positive in HepG2 cells, whereas expression and H3K36me3 are clearly negative.
Thus, promoters carrying SNAI sites tend to have higher histone acetylation levels than expected based
on their general activity, and lower gene expression and H3K36me3 levels than expected based on the
general activity.

As described in section 1.10, after removing the contribution of the first principal component to the
motif activities, we re-calculated significance z-values zim for each motifm and each mark i. In addition,
we calculated a specificity sim which measures the fraction of the overall that is associated with mark i.
That is, a motif m will be highly specific for mark i if it has a high z-value zim, and low z-values for all
other marks. To identify motifs that are either most significant or highly specific for particular marks, we
plotted scatter plots showing the significance and specificity for each motif (Suppl. Fig. 24). In each of
the scatters we have indicated in red those motifs that had either very high significance or high specificity
for the motif. Interestingly, we often find that the motifs with highest significance for a particular mark
also have high specificity. For example, HNF1a is both most significant and most specific for H3K4me2
levels in promoters. Not surprisingly, the occurrence of CTCF motifs is the most significant determinant
of the observed levels of bound CTCF.
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A)

B)

C)

D)

E)

Supplementary Figure 22: Inferred motif activities for 5 example motifs on the ENCODE ChIP-seq
data sets measuring chromatin [28]. Each row (labeled A through E) shows the activities for explaining
expression (black), H3K4me3 (dark green), H3K4me2 (light green), H3K9ac (dark blue), H3K27ac
(light blue), and H3K36me3 (brown) levels, for one motif. The left panels show the motif activities as
inferred from the original data the right panel the motif activities after the contribution along the first
principal component has been subtracted. The names of the motifs are indicated above each panel and
sequence logos are shown as insets. Note that the motif activities for the different marks go from highly
correlated to essentially uncorrelated as the first principal component is removed.42



Supplementary Figure 23: First principal component explaining the largest amount of chromatin mark
and expression levels associated with each promoter, separately for each of the 8 cell types (top 8 panels).
The bars indicate the relative contributions of expression and each of the chromatin marks to the first
principal component. Note that the first principal component is virtually identical in each cell type. The
bottom 8 panels show the fraction of the total variance explained by each subsequent principal component
(bars) and the cumulative fraction of variance explained by consecutive components. Note that, for each
cell type, close to 60% of the variance in expression and the 9 chromatin marks is explained by the first
component.
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Supplementary Figure 24: Significances and specificities of the motifs for explaining variations in dif-
ferent chromatin marks. Each panel corresponds to one mark (as indicated on the axes) and each dot
corresponds to one motif. The significance of each motif is quantified by a z-value of the motif’s activity
for a given mark, after motif activities along the first principal component have been removed (see sec-
tion 1.10). The specificity of a motif for a given mark is the fraction of all significance associated with
a given mark (its z-value squared relative to the sum of all z-values squared, see section 1.10). the most
significant and/or specific motifs for each mark are indicated in red.
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