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Below we introduce a model of the dynamics of an isogenic cell culture under treatment with a lethal
dose of antibiotic. Following Balaban et al. [1], we assume cells stochastically switch between a normal
state, which is susceptible to the antibiotic, and a persister state, which is not susceptible to the antibiotic.

Differential equation model

We assume that at the start of the experiment there are n0 normal cells and p0 persisters. We further
assume that, during the antibiotic treatment, normal cells are killed at an effective rate µ (which is
the difference of their death and proliferation rates), whereas persisters are assumed to neither die nor
proliferate (i.e. an effective growth rate of zero). Finally, we assume normal cells switch to a persister
state at rate a, and persisters revert to normal cells at rate b. This leads to the following set of differential
equations

dn

dt
= −(a+ µ)n+ bp, (1)

for the number of normal cells n, and
dp

dt
= an− bp (2)

for the number of persisters p.
Since we cannot directly distinguish persisters from normal cells, our measurements only give access

to the total number of cells T = n+ p as a function of time. Note that

dT

dt
=

dn

dt
+

dp

dt
= −µn (3)

If we define f = n/T to be the fraction of normal cells, we find

dT

dt
= −µfT, (4)

which has the general solution

T (t) = T0 exp
(
−µ

∫ t

0
f(τ)dτ

)
= T0e

−µ〈f〉t, (5)
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with 〈f〉 the time averaged fraction of normal cells from time 0 to time t. We derive this equation (5)
because it gives an intuitive insight into the dynamics of the total number of cells. Initially most cells are
normal, i.e. 〈f〉 is close to 1, and T (t) drops exponentially at a rate close to µ. As many of the normal
cells die, the fraction of persisters starts rising, 〈f〉 becomes smaller, and the decay rate starts dropping.
Eventually a steady-state fraction f∗ of normal cells is reached, and 〈f〉 will approach this steady-state
fraction f∗. From that point onward, T (t) will again follow simple exponential decay, but now with rate
µf∗. That is, the decay rate at late times is simply the product of the limit fraction of normal cells f∗ and
the death rate µ of normal cells.

Persister fraction

To calculate the limiting persister fraction f∗ and the dynamics of f we can write a differential equation
for f . We have

df

dt
=

d(n/T )

dt
=

1

T

dn

dt
− n

T 2

dT

dt
. (6)

Using the equations for dn/dt and dT/dt already derived above we find

df

dt
= b− (a+ b+ µ)f + µf2. (7)

Note that this equation does not depend on T . From it we can easily calculate the fraction f∗ at late
times, i.e. by solving

µf2 − (a+ b+ µ)f + b = 0. (8)

To simplify this equation, we note that we can divide out an overall factor µ. By defining relative rates
α = a/µ, β = b/µ and γ = (α+ β + 1), we obtain

f2 − γf + β = 0. (9)

The solution (wich lies in 0 ≤ f∗ ≤ 1) is

f∗ =
γ

2

(

1−
√

1− 4β

γ2

)

. (10)

To develop some intuition for this expression, we note that γ > 1 and that β must be a small number
(i.e. b % µ) because the death rate is much larger than the rate at which persisters switch back to normal
cells. If this were not the case, we wouldn’t notice there were persisters. We thus expand to first order in
β and find

f∗ ≈
β

1 + α+ β
=

b

a+ b+ µ
. (11)

That is, to first order, the fraction of normal cells is given by the relative rate at which they are produced
(b) from persisters, and the total rate (a+ µ) at which they disappear.
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Dynamics at all times

The solution of the differential equation for T (t) takes the following general form

T (t) = T0

[
c1e

−λ1µt + c2e
−λ2µt

]
, (12)

where the exponents are given by

λ1 = f∗ =
γ

2

(

1−
√

1− 4β

γ2

)

, (13)

and

λ2 =
γ

2

(

1 +

√

1− 4β

γ2

)

. (14)

Note that 0 ≤ λ1 ≤ 1 and that λ2 ≥ 1.
The prefactors can also be expressed in terms of the exponents and the initial fraction of normal cells

f0:

c1 =
λ2 − f0
λ2 − λ1

, (15)

and
c2 =

f0 − λ1

λ2 − λ1
. (16)

Note that, per definition, c1 + c2 = 1, i.e. these are not two independent parameters. Note also that
because λ2 > λ1 it is guaranteed that c1 > 0, i.e. in the limit of long time the number of cells is positive,
as it should be.

Fitting

The most straight-forward approach to fitting this model is to introduce the five parameters T0, µ, α, β,
and f0, and then search for the maximum likelihood solution, i.e. where the observed data are maximally
likely given the predicted dynamics T (t). However, this set of 5 parameters is redundant in that different
settings of these parameters can lead to the same predicted dynamics T (t).

Thus, instead of fitting these 5 parameters directly, we instead fit a general mixture of two exponen-
tials, i.e. we introduce the general solution T (t) = c̃1e−λ̃1t+c̃2e−λ̃2t. However, not every combination of
parameters (c̃1, c̃2, λ̃1, λ̃2) can be realized by our model. Specifically, allowing any combination α ≥ 0,
β ≥ 0, and µ ≥ 0, 0 ≤ f0 ≤ 1, and T0 ≥ 0, we find that

• Any c̃1 ≥ 0 can be realized.

• Any c̃2 ≥ −c̃1 can be realized. Note that c̃1 + c̃2 = T0, and T0 has to be non-negative. It is thus
more natural to pick c̃1 and T0 freely, and then set c̃2 = T0 − c̃1.

• Any value λ̃1 ≥ 0 for the ‘slow’ exponent (i.e. λ̃1 is per definition smaller than λ̃2) can be realized.
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• Given that we freely pick (T0, c̃1, λ̃1), the value of λ̃2 is constrained as follows. If we write

λ̃2 = λ̃1(1 +∆), (17)

then ∆ has to lie in the interval [0, T0/c̃1].

In order to ensure that the parameters (c̃1, c̃2, λ̃1, λ̃2) satisfy these constraints we use the following
parametrization. Let (x, y, z, w) be an arbitrary vector of 4 real numbers. Then write

• c̃1 = ey+x.

• c̃2 = ey (1− ex).

• λ̃1 = ez .

• λ̃2 = ez
(
1 + e−x+w

1+ew

)
.

Determining the parameters from the general fit

Once we have determined maximum likelihood values of (x, y, z, w), and through them the values of
(c̃1, c̃2, λ̃1, λ̃2), we want to determine the values of the parameters (a, b, µ, T0, f0) that correspond to
these parameters. Of course, we generally cannot determine all 5 parameters from the 4 fitted constants.
What we will thus do, is determine α, β, µ, and T0 in terms of the fitted parameters and f0. We will
see below that, for realistic parameters, f0 may be tightly constrained in small window near f0 ≈ 1. We
have for the parameters in terms of the fit:

•
T0 = c̃1 + c̃2 = ey

.

•
µ =

λ̃1

f0
(1 +∆− ρ∆),

where ρ = c̃1/T0 = e−x and ∆ = (λ̃2 − λ̃1)/λ̃1 = e−x+w/(1 + ew).

•
β =

f2
0 (1 +∆)

(1 +∆− ρ∆)2
.

•
α =

[
1− f0

1 +∆− ρ∆

] [
f0(1 +∆)

1 +∆− ρ∆
− 1

]
.

Clearly, since ρ∆ < 1 (because ∆ is at most T0/c̃1 = 1/ρ), for any value of f0, both µ and β take on
non-zero and therefore valid parameter values. Demanding α ≥ 0 sets bounds on the allowed values of
f0:

1− ρ∆

1 +∆
≤ f0 ≤ 1 +∆− ρ∆ (18)
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Often the second limit may be larger than 1 so that the effective range runs from [1 − ρ∆/(1 + ∆), 1]
for f0. For our data we typically find that the lower bound on f0 is close to 1 and that, as a consequence,
there is only a limited range in f0, which in turn implies that we can accurately estimate α, β, and µ from
our maximum likelihood fit.
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