Supplemental Material

Proliferation rate of uninfected cells

We have data at four time points (32, 47, 95, and 119 hours) for which two shape parameters and one fluorescence parameter of a large number of cells were measured.  The shape parameters are used to identify live cells from dead cells.  The gates we used are FSC between 100 and 200, and SSC lower than 200 arbitrary fluorescence units (see Fig. 1). 

  We used these flow cytometric measurements and the fluorescent dye CFSE to estimate the proliferation rate of uninfected cells.  Every time a cell divides, the amount of fluorescent marker is divided roughly equally between the two daughter cells.  Thus, the amount of marker in daughter cells is a random fraction of the amount of marker in the parent cell. Let us denote by x the logarithm of the amount of marker in a cell before duplication, and let x+log(() and x+log(1-() be the amount of marker in the daughters (i.e. a fraction ( goes to one daughter while a fraction (1-() goes to the other).  Denote log(() = z , log(1-() = z', and denote the probability of the marker being divided as such by W(z).  Let N(x,t) be the number of cells where the logarithm of the amount of marker equals x at time t.  We assume that these cells die at a constant rate ( and proliferate at a constant rate (.  We then have
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Integrating over x we obtain 
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where N(t) is the total number of cells.

From these two equations, we can derive an equation for the fraction 
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 of cells in the culture that have the logarithm of the amount of marker equaling x:
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If we multiply this equation by x and integrate over x we obtain the following expression for the evolution of the mean (x(:


[image: image5.wmf]  

¶

á

x

ñ

¶

t

=

l

W

(

z

)[

z

+

z

'

]

dz

=

l

[

á

z

ñ

+

á

z

'

ñ

]

ò


The above equation establishes that (x( decreases linearly with time, with a slope that depends on the proliferation rate ( and the mean of log(() and log(1-().  As long as the number of markers per cell is not too small, the distribution W(z) will be sharply peaked around z = log(() = log(1/2).  Thus, we will have approximately:
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In conclusion, by simply determining the rate of change of the average of the logarithm of the marker, we can uniquely determine the proliferation rate (. 

We took the fluorescence data for all uninfected cells that we deemed alive by flow cytometric light scattering properties (see above) and calculated both the mean of the logarithm of the fluorescence as well as the logarithm of the mean fluorescence.
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Fig. 7 The decay of the average logarithm of fluorescence as a function of time in hours.  The dots show the experimental data, with the mean of the distribution of the logarithm of fluorescence on the vertical axis and time in hours on the horizontal axis.  The solid and dashed lines are linear fits obtained by either including (dashed) or excluding (solid) the first data point.
Fig. 1 shows that for our experimental data the mean of the logarithm of fluorescence indeed decreases linearly with time.  The dashed and solid lines show linear fits including and excluding the first point respectively.  The correlation coefficients for these fits are R = 0.9975 and R = 0.9995 respectively.  The inferred slopes (-0.03482 and -0.03648) are similar and correspond to doubling times of 27.6 and 26.3 hours respectively.  We may assume that the real proliferation rate is somewhere between these extremes. In the main text we set the proliferation rate 
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Finally, we note that as the number of divisions get large, the amount of marker may fall below the detection limit for certain cells. This would lead to an overestimation of the average (x( since the smallest values of x would be ‘missing’ in the average.  This in turn would lead a curve, such as the one shown in the figure above, to turn upward at late times.  Since we do not observe so an upward bend in our figure, we conclude that this regime was not yet reached in our experiments.

Uninfected cultures, deriving equation (10) 

For cultures without virus there are no infected cells, i.e.
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, and there is no infection, i.e. 
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. Equations (4) and (6) thus disappear for cultures that only contain uninfected cells and the remaining equations (3) and (5) become:
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The first of these can be easily solved and we obtain
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Substituting this into the second equation, we obtain
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 This can be solved by multiplying both sides of the equation by 
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. We thus obtain
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where C is an integration constant. We set C by introducing the variable 
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 which denotes the ratio of dead to life cells at time zero. This then gives
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. Substituting this expression and the expression for x(t) into the definition of the viability v(t) (equation (1)) we obtain equation (10).

Equation (10) gives the viability v(t) as a function of  time t and the parameters
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 and γ. The proliferation rate λ we determine independently from the CSFE data as described above. We now use the measured values of v(t) to estimate 
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 at which we measured the viability in triplicate. These measurements we will denote as 
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Given that we do not know 
[image: image34.wmf]j

s

 we integrate it out of the equation using the standard ‘scale’ prior 
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. Finally, by taking the product over all time points  
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 we obtain L, the likelihood of the measurement data given our model v(t):
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,which is equation (11) of Methods. 
Deriving equations (7)/(12) from equations (1)-(6)

Starting from equations (1)-(6) we wish to derive equation (7)/(12). Using equations (1)-(2) we have
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Using equations (3) and (4) we obtain


[image: image40.wmf][

]

f

q

p

f

y

x

y

q

p

x

dt

y

x

d

)

(

)

1

)(

(

)

(

)

(

)

(

)

(

m

l

m

l

m

l

m

l

-

+

-

-

+

=

-

+

-

=

+

.

 Note that (x+y) denotes the total number of life cells and that its time derivative is independent of the infection rate a(t). Using equations (5) and (6) we obtain
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Combining the last two equations with the first we find
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which is equation (7) in Methods and equation (12) of the text.

Let 
[image: image43.wmf]log()

dv

w

dt

º

. Using equation (7) we can solve for q in terms of w, v, f, p, q, λ, μ, and γ. We then obtain
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which is equation (13) of the text. Finally, the upper and lower bounds on q of equation (14) are obtained by setting p=1 (no effect of infection on cell-cycle progression) and p=0 (infection causing total cell-cycle blockage) respectively. 
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